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ABSTRACT
Effect of Void Geometry on Strength, Stiffness, and Failure Modes of Rock-like
Materials
By
Omed Yousif
Dr. Moses Karakouzian, Examination Committee Chair
Professor of Civil and Environmental Engineering and Construction
University of Nevada, Las Vegas
The host rock of portion of the first proposed high-level nuclear waste repository
in the United States of America (Yucca Mountain, Nevada) is tuff rock that contains
voids (lithophysae) with different shapes, sizes, and distributions. The existence of these
voids can cause a dramatic change in the rock’s mechanical properties such as uniaxial
compressive strength, UCS, and Young’s modulus, E. Accordingly, in an experimental
program, the effects of void existence on the engineering properties of the tuff rocks was
explored in a work of US Department of Energy conducted in the Department of Civil
and Environmental Engineering and Construction of the University of Nevada at Las
Vegas (UNLV); Project Activity Task ORD-FY04-013. Since it was difficult to test
actual rock specimens, due to heterogeneity, break down during coring and sampling, and
impossibility of controlling shape, size and distribution of voids in actual specimens of
tuff rock, rock-like material (Hydro-StoneTB®), instead, was used in the experimental
program. The experimental works consisted of laboratory testing on rock-like material
(Hydro-StoneTB®) cubes under uniaxial compression. To obtain porous cubes with
different void geometries, cubes with open ended longitudinal openings having different

cross sections (circular, square, and diamond), different sizes (uniform large, medium,
i
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and small, and mixed voids), and different distributions (patterns A, B, and C) were made
and tested under uniaxial compression. Fifty two porous specimens were made. Each
porous specimen, porous cube, was produced in triplicate. Ten solid cubes were also cast
to represent analog material with zero void porosity. The total number of experiments,
including the ten solid cubes, was one hundred sixty six, 166, cubes.

This study attempted to characterize the effects of void porosity on compressive
strength and elastic modulus more definitively through considering the other factors in
data analysis and sought for more effective relationships between them using the
experimental results of Project Activity Task ORD-FY04-013. In addition, the
experimental results were used to validate a numerical analysis carried out using a
discontinuous computer program; Universal Distinct Element Codes - UDEC.
Furthermore, another numerical analysis was performed to study the effect of void
geometry on mechanical properties more systematically.

The results showed that not-only the porosity but also the void geometry can
affect the strength and deformability of rock-like materials. VVoid shape, void orientation,
and void spatial distribution are partially responsible for the scattering in the mechanical
property values as a function of void porosity. In addition, the results of the numerical
simulations using UDEC software displayed consistent trends in Hydro-StoneTB®
uniaxial strength and deformation as a function of void porosity. Furthermore, the two-
dimensional numerical results can be transferred to three-dimensional experimental

results through a power correlation.
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CHAPTER ONE INTRODUCTION

1.1 General

Existence of voids and cavities, specific type of discontinuities in rocks, can cause
a dramatic change in mechanical properties of the rock. For instance, an increase in void
porosity, ratio of volume of voids and cavities to the total volume of the rock, leads to a
reduction in rock uniaxial compressive strength, UCS, and Young’s modulus, E, (Dunn et
al., 1973; Price 1983; Price et al., 1985; Logan 1987; Vernik et al., 1993; Avar 2002;
BSC 2003; Price 2004; Hudyma et al., 2004; Costin et al., 2009). Since the pores and
cavities are appearing in different sizes, the porosity is generally classified into two types;
microporosity and macroporosity (Avar et al., 2003; Hudmya et al., 2004; Jespersen et
al., 2010). The microporosity is created by micropores between rock minerals, or grains.
The macroporosity, also void porosity, on the other hand, is created by larger pores
(macropores) that are visible to the unaided eye such as large cavities, vugs and vesicles.

In rock mechanics, the effects of microporosity on the mechanical properties of
rocks is usually ignored; it is assumed that microscopic porosity is uniformly distributed
within the rock matrix, or laboratory specimens, and therefore, the rocks can be classified
as intact rocks (Avar 2002). On the contrary, macroporosity has important roles on the
rock’s engineering behavior, and accordingly, its effects have been studied in different
types of rocks such as basalt (Al-Harthi et al., 1999), chalk (Palchik and Hatzor 2004),
and tuff (Price 1983; Tillerson, and Nimick 1984; Price et al., 1985 & 1994; Schultz and
Li 1995; Avar 2002; BSC 2003; Price 2004; Hudyma et al., 2004; Costin et al., 2009).

However, due to Yucca Mountain in Nevada, USA, which is the nation’s first proposed
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high-level nuclear waste repository, more attention has been given to tuff rock (BSC

2003; Righy 2004).

1.2 Tuff Rock at Yucca Mountain

The host rock of portions of the first proposed high-level nuclear waste repository
in the United States of America (Yucca Mountain, Nevada) is tuff rock; both lithophysal
and nonlithophysal tuff (BSC 2003). Lithophysal tuff rock is pyroclastic volcanic rock
(igneous rock) formed by welding of falling volcanic ash and has composition of high-
silica rhyolite, contains wide range of lithophysae in sizes and shapes as shown in Figure
(1.1) (Avar 2002; BSC 2003; Hudyma et al., 2004). Lithophysae are hollow, bubble like
cavities formed by trapped pockets of gas within the volcanic ash (Avar 2002; BSC
2003). Their sizes are typically ranging from millimeters to decameter. The largest
measured Lithophyse at Yucca Mountain, however, is 1.8 m across (BSC 2003). In many
tuff rocks, a thin layer of vapor-phase minerals is coating the inner faces of the
lithophysae. The coating layers are called rims and/or spots, and their thickness is less
than few millimeters (BSC 2003). Accordingly, lithostratigraphic features in the tuff
rocks of the Yucca Mountain are matrix-groundmass, the phase altered material around
the lithophysal cavities (rims or spots), and the cavities (lithophysae) themselves (Price et
al., 1985; BSC 2003). The matrix-groundmass consists of solid minerals that contain
intergranular spaces (pores).

Non-lihophysal tuff rock, on the other hand, is fine-grained, densely welded, low
porosity, strong volcanic rock that contains limited numbers of lithophyse, rims, and

spots (BSC 2003).
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In the reports and studies related to Yucca Mountain, the tuff porosity of Yucca
Mountain is generally divided into four types; groundmass matrix porosity, rim and spot
porosity, lithophysal porosity, and total porosity (Price 1983; Price et al., 1985; Avar
2002; BSC 2003). However, according to BSC (2003), it is the total porosity that plays an
important role in assessing the mechanical properties of lithophysal tuff rocks.

The porosity of matrix groundmass consists of pores smaller than 2 micrometer,
and its value for the Topopah Spring Tuff is about 10 percent; ranging from 8 to 13
percent (BSC 2003). The porosity of the rim and spot is typically ranging from 20 to 40
percent with 30 percent average (BSC 2003; Rigby 2004). The lithophysal porosity
consists of pores vary in size from one millimeter to larger than a meter, and its value
varies from 3 to 35 percent with 15 percent average (Rigby 2004). The summation of the
above porosities is called total porosity. The total porosities can be calculated by several
ways as follows:

1- Drying the tuff samples to determine the dry unit weight and then pulverizing
them to find the specific gravity and using them in this equation n(%) = [(1-
(va/Gsyw)] (Avar 2002). The specific gravity, G, is found from the ratio of weight
of a particular volume of pulverized tuff to the weight of an equal volume of
distilled water in accordance to ASTM D854. The dry unit weight, vq, IS
determined by using total volume of a specimen and its weight.

2- By saturating the specimen and the determining the volume of water that occupies
the pores (BSC 2003).

3- By an approximation method using point counting and planimetric analysis (Price

etal., 1985).
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Figure (1.1) Photographs of Lithophase-rich Tuff from Yucca Mountain
(Rigby 2004: Nott 2009)

1.3 Rock-like Materials

Due to heterogeneity, breaking down during coring and sampling, and
impossibility of controlling shape, size and distribution of voids, it is difficult to sample
and test actual specimens; especially lithophysae-rich tuff (Rigby 2004; Erfourth 2006;
Rigby 2007). Therefore, rock like material, instead, has been used to explore the effects
of void porosity on the engineering properties of the rocks. It is quick, easy, and
controllable. The majority of the specimens of the rock-like, analog, material specimens
have been made of either plaster of Paris (gypsum plaster), or Hydro-StoneTB® (Avar
2002; Hudyma et al., 2004; Erfourth 2006; Rigby 2007). The Hydro-StoneTB® is a
powdered mixture of plaster of Paris (more than 90% by weight), Portland cement (less
than 5%), and sand (less than 5%) (Chawla 2007; Nott 2009).

However, the Hydro-StoneTB® is better analog material compared to the plaster

e lithophysal tuffs from Topopah Spring formation (Rigby 2007).

4
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The average values of Young’s modulus (E) and the uniaxial compressive strength (UCS)
of plaster of Paris are about 3.1 GPa (Avar et al., 2003) and 11 MPa (Hydyma et al.,
2004) respectively. These average values are very far from those of the lithophysal tuffs
from Topopah Spring formation at Yucca Mountain; the average values of Young’s
Modulus and the uniaxial compressive strength of the lithophysal tuffs, from Topopah
Spring formation at Yucca Mountain, are about 20 GPa and 60 MPa respectively (Righy
2004). Therefore, in an attempt, Rigby (2007) adopted the Hydro-StoneTB® as a new
rock like material to simulate the lithophysal tuffs from Topopah Spring formation at
Yucca Mountain. From uniaxial compression tests carried out on cubical specimens (152
mm on a side), made of Hydro-StoneTB®, Rigby (2007) obtained an average Young’s
modulus of 16 GPa and a strength of 55 MPa. It was also found that the brittle behavior
of Hydro-StoneTB® was similar to those estimated for solid Yucca Mountain lithophysal

tuff.

1.4 Study Objectives

The previous studies show that the higher void porosity leads to lower strength
and stiffness of rock-like materials. However, the correlations between the mechanical
properties of the rock-like materials with void porosity are not very clear and well-
established. It is believed that, besides the void porosity, other geometric factors, such as
void shape, void size, and void spatial distributions can affect the relationships between
the engineering properties and void porosity. Identifying the significance of those factors

will enhance insight into the effects of void geometry on engineering properties.
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This study attempts to characterize the effects of void porosity on compressive
strength and elastic models more definitively through considering the other factors in data
analysis and seeks for more effective relationships between them. In addition, new
numerical models generating to study the effects of void geometry on engineering
properties of rock-like materials more thoroughly. The methodology of this study
composed of three main parts. The first part comprises presenting and analyzing data
obtained from the work conducted under Cooperative Agreement No. DEFC28-
04RW12232 between the U. S. Department of Energy and the Nevada System of Higher
Education (NSHE). For the second part, the experimental test data in the first part are
used to validate numerical models of rock-like material using a discontinuum computer
program; Universal Distinct Element Codes - UDEC. In the third phase, another
numerical analysis will be performed to study the effect of void geometry on mechanical

properties more systematically.

1.5 Dissertation Outline

The outline of this dissertation is as follows

e Chapter 2 reviews the experimental and numerical studies those carried out on
both actual rocks and rock-like material specimens to investigate the effects of
void porosity on strength and deformation properties and crack patterns.

e Chapter 3 presents a general description on the mechanical characterization of
brittle materials generally and rocks particularly; it is concerning with the
mechanical characterization of brittle, homogenous, and isotropic materials,

including rocks, under static load.
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e In Chapter 4, the results of experimental tests carried out on cubes made of rock-
like material containing voids with different shape, size, and distribution are
analyzed in order to obtain mathematical models describing the variation of
strength and deformation properties with porosity. In addition, the effects of
porosity on failure crack patterns of the cubic specimens are addressed.

e Chapter 5 represents numerical analysis to simulate the experimental tests in
Chapter 4.

e Chapter 6 represents a new set of numerical models in order to study the
mechanical behavior of the analog material under compression considering new
void shapes, void orientations, and voids distribution.

e Finally, the conclusions and recommendations are given in Chapter 7.
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CHAPTER TWO LITERATURE RIVIEW

2.1 Introduction

To quantify the effects of void porosity, macroporosity, on rock engineering
behaviors, several studies have been carried out on both actual rock samples and rock-
like materials. However, in general, the studies are very few in number and so far limited
to three rock types; basalt (Al-Harthi et al., 1999), chalk (Palchik and Hatzor 2004), and
tuff (Price 1983; Tillerson and Nimick 1984; Price et al., 1985 & 1994; Schultz and Ll
1995; Avar 2002; BSC 2003; Price 2004; Rigby 2004; Hudyma et al., 2004; Costin et al.,
2009). For the reasons mentioned in the previous chapter, it is difficult to sample and test
actual rock specimens. Therefore, rock like material, instead, has been used to explore the
effects of void porosity on the engineering properties of the rocks. The majority of the
specimens were made of either plaster of Paris (Gypsum plaster) or Hydro-StoneTB®
(Avar 2002; Hudyma et al., 2004; Erfourth 2006; Rigby 2007; Nott 2009; Jespersen et al.

2010).

2.2 Actual Rock Samples
2.2.1 Tuff Rock

To assess mineability and stability of underground openings in the Yucca
Mountain, and to explore the effects of lithophysae presence, the mechanical properties
of tuff rock was intensively studied in the Yucca Mountain Project. Therefore, adequate
experimental data are available on tuff rock obtained from several studies carried out by

Sandia National Laboratories, in association with the Yucca Mountain project. However,
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the sizes of the tested samples in the above researches were mainly 50.8 mm or smaller in
diameter with length to diameter ratio of approximately 2.0. The experimental data on the
small diameter samples (25 mm to 50 mm) are described in the BSC (2003), and
additional analysis is presented in Rigby (2004). The results showed a sharp decline in
both elastic modulus and compressive strength with increasing porosity, see Figures (2.1)
and (2.2). However, the data showed a very large scattering in both tuff’s compressive
strength and elastic modulus. Part of the scatterings might be due to the specimen size
(Rigby 2004). According to Rigby (2004), due to small specimen size, the total porosity
of these samples, typically ranged from 8 to 19 percent, captures only small amounts of
lithophysae; the total porosity of the small samples was primarily composed of matrix
porosity, with additional porosity, of course, contributed by small amounts of rims, spots,
and lithophysae. Therefore, the results may not precisely represent the actual strength or
elastic properties of the lithophysal tuff rock; the results may biased and not indicative.
Accordingly, this section is only considering the studies in which tuff specimens with
diameter (or side dimension) greater than 50.8mm have been tested.

In an experimental program to study the mechanical properties of Yucca
Mountain’s tuff, Price et al. (1985) tested ten large-diameter cores of lithophysal tuff rock
(266.7 mm in diameter and 533.4 mm in length) recovered from outcrops of Busted Butte
(Nevada Test Site at Yucca Mountain). The tuff specimens were first water saturated,
shown in Figure (2.3), and then tested under unaxial compression at room temperature
(23° C). The specimens had total porosities ranging from 30.9% to 40% with an average
of 35.2%. The total porosities, summations of large lithophysal cavities (under several

centimeter), small pores (under 0.2 mm), and intergranular pores (1-2 micrometer) in
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vapor-phase-altered zones around lithophysae, and submicoscopic intergranular pores in
the devitrified matrix, were measured using point counting and planimetric analysis.
From the results, since the specimen’s porosities were distributed in a narrow range, a
conclusive relationship between mechanical properties (uniaxial compressive strength
and Young’s modulus) and the total porosity was not obtained. However, when the
results were supplemented by previous testing by Price (1983) on saturated small
specimens of tuff (25.4 mm in diameter and 50.8 mm in length), the results showed that,
for the corresponding porosities, the strength of the large lithophysal specimens were
lower and Young’s moduli were higher than those of small size specimens as shown in
Figures (2.4) and (2.5). They contributed these findings, lower strength and higher
Young’s modulus, to the existing of large pores in the large samples; smaller pores in the
small size samples led to stiffer system, smaller short-term built-up of pore pressure, and
more homogeneity compared to the large samples.

In 2002, to study the mechanical properties of lihtophysal tuff rocks using large
size samples, thirteen large-diameter core specimens having 290 mm diameter with a
length to diameter of 1.7 or greater (a length of at least 304 mm) were recovered from
repository host horizon at Yucca Mountain. All thirteen specimens, four saturated and
nine room dried, were tested under unaxial compression at room temperature (24° C)
(discussed in Price 2004 and Rigby 2004). The lithophysal porosities, ranging from
11.9% to 30.3%, were found by conducting four vertical line surveys down the length of
each specimen. The total porosities, ranging from 25.6% to 51.7%. were estimated by
summing: (1) matrix porosity), (2) rims and spots porosity, and (3) lithophysal porosity.

The results were supplemented by previous testing by Price et al. (1985) on ten saturated

10
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large-diameter specimens of tuff (266.7 mm in diameter and 533.4 mm in length). From
the high scatter results, it can be seen that the uniaxial compressive strength and Young’s
modulus (E) decrease exponentially with increasing void porosity for both room dry and
saturated sample conditions as shown in Figures (2.6) and (2.7). However, the saturated
sample conditions showed lower strength compared to the room dry sample conditions.

The result yielded the following best fit-regressions:

Room Dry, UCS(MPa) = 39.235¢0-032+Porosity (%) R?=043 ..(2.1)
Saturated, UCS(MPa) = 28.473¢~0-0383+Porosity (%) R?=10282 ..(2.2)
Room Dry, E (GPa) = 33.452¢~0-0593(Porosity,%) R?=0.69 ..(2.3)

Satturated, E (GPa) = 27.405¢~0:0497+Porosity (%) R?=10.156 ..(2.4)

In addition, the results showed an increase in uniaxial compressive strength with an

increase in the Young’s modulus following a linear law, see Figures (2.8), as follows:

Room Dry,UCS(MPa) = 0.9832 x E (GPa) + 10.593 R?>=0.587 ..(2.5)

Saturated, UCS(MPa) = 0.6625 x E (GPa) + 67239 R? = 0.556 ..(2.6)

Furthermore, in an numerical analysis, Christianson et al. (2006) used the aforementioned
experimental results (results of experimental tests on large-diameter core specimens
having either 267 mm diameter or 290 mm diameter) to verify their numerical
simulations. In the numerical analysis, universal distinct element code (UDEC) software

was used to general 1 m x 1 m plain strain models. The material in the models was

11
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described by randomized Voronoi tessellation technique. In this technique, Voronoi
tessellation, the model material is represented by an assemblage of small discrete blocks
(or sub-blocks or grains — having average dimension of 17 mm) by which the realistic
crack initiation and propagation can be achieved. To generate lithophysal cavities in the
numerical models, 90-mm diameter holes were cut into the solid models with three
different hole configurations. By the three different hole configurations, three different
porosity, 10, 17, and 24%, were obtained. The numerical results were consistent with the
experimental results in both strength and deformation as shown in Figures (2.9) and
(2.10); both compressive strengths and Young’s modulus of the numerical models
decreased exponentially with increasing porosity in the same trend of the experimental

tests. The best fit regressions are:

Numerical UCS,q(MPa) = 51.648e~6:202*Porosity (%) R2 = (0,9344 ...(2.7)

Numerical E,(GPa) = 19.68 x ¢~3-1677*Porosity (%) R?>=0.9344 ..(2.8)

In an experimental program to study the effects of porosity on the mechanical
properties of tuff for his dissertation, Avar (2002), tested ten cubes (approximately 150
mm per side) of lithophysae-rich tuff cut from blocks recovery from Busted Butte, Fran
Ridge and Sandia Quarry near Yucca Mountain on the Nevada Test Site. Several plaster
samples were also tested in the same experimental program. The ten tuff specimens, had
total (bulk) porosities ranging from 12.2 to 32.9%, and were tested dry at room
temperature under uniaxail compression. The tuff specimen total porosities, %, were

calculated using this equation:

12
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Total porosity, % = [(1 _ JYa )] ..(2.9)
GsYw

where Gs is specific gravity, yq IS dry unit weight, and v, is water unit weight. The
specific gravity, Gs, was found from the ratio of weight of a particular volume of
pulverized tuff to the weight of an equal volume of distilled water in accordance to
ASTM D854. The dry unit weight of the tuff, y4, was determined by using total volume
of a specimen and its weight. Figure (2.11) shows same of the tuff specimens used in this
study. The results showed that both compressive strengths and deformation decreased
with increasing porosity, see Figures (2.12a & Db), giving linear relationship as shown

below:

UCS, (Psi) = —372.6 x Porosity (%) + 14025 R? =0.76 ..(2.10)

E,(Ksi) = —44.616 = Porosity (%) + 1699.4 R? =0.77 .. (2.11)

Hudyma et al. (2004) tested several cubic specimens of tuff to explore the effects
of lithophysae on compressive strength. The tuff samples, cut from outcrops of Topopah
Spring Tuff at Yucca Mountain, had approximately 100 mm per side (as shown in Figure
(2.13)) and total porosities ranging from 17 to 49%. The tuff specimen total porosities
were calculated using the same method as Avar (2002); using this equation [(1-(yd¢/Gsyw)]
in accordance with ASTM D854 (2002). Similarly, the specific gravity, Gs, was found
from the ratio of weight of a particular volume of pulverized tuff to the weight of an

equal volume of distilled water. The dry unit weight, yq, was determined by using total

13
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volume of a specimen and its weight. By incorporating this data with previous tests
carried out by Price et al. (1985), Martin et al. (1994, 1995), and Avar (2002), a wide
range of porosities, from approximately 12 to 49%, were covered. The very scattering
results gave a logarithmic relationship between uniaxial compression strength and

porosity, see Figure (2.14), as follows:

UCS,(MPa) = —49.36 = In Porocity (%) + 189.35 R? = 0.62 ..(2.12)

In a more recent study, to characterize mechanical behaviors of the, Costin et al.
(2009) tested several large cores of lithophysal tuff recovered from outcrops at Yucca
Mountain nearby Busted Butte lithophysal rock units. To achieve the goals of the study,
and considering the compatibility between size distribution of lithophysae (25-75 mm)
with core sizes, and adopting the length to diameter ratio of > 2, tuff specimens having
approximately 300 mm diameter to 600 mm in length were cored and tested under
uniaxial compression, see Figure (2.15a & b). The samples were tested either at room
temperature, for both saturated and room dry conditions, or at 200 °C (room dry only).
The total porosity, which includes the porosity of the matrix material, the phase altered
material around the lithophysal cavities, and the cavities themselves, were found to be
between 35 to about 50 percents for samples tested at room temperature; both room dried
and saturated. The result showed that uniaxial compressive strength of the high
lithophysal tuff was inversely proportional to the porosity and directly proportional to the
elastic modulus as can be seen from Figures (2.16) and (2.17)). However, no relationship

was given.
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Figure (2.3) Photograph of the Large (267 mm) Diameter Cores fromBusted Butte

Samples (Rigby 2004)
1000 i T
L |
T |
|
I
: +
#: +
i iﬁﬁ' L e
AT g
5 ¥ -f; i 4--ﬁrk+-++ IE} A
& + e TR
% Tm o e S e e S TSR S T e B T = R _g ;$§ - ; S T T T T T T TR T == e IE L =
1 4 2 +'¢. H= =
E | %*{43"&&# 3+
3 T
£ | ++f-f-+-*l.-‘tf-'§7 i i
E | - +
g ! L o o™Aa
I ' Oe
% 1_0 T e e T S e T e TR R A e A e S e S ‘i’ T _1: ___________ i _:‘?l _____________
£ I -+ Less than 51 mm {Small Core), saturated : -
0267 & 290 mm (Large Core), saturaled ! i
= |
|
|
|
|
|
|
1 T ! T Ir T ‘l
1 10 100

Total Porosity

Figure (2.4) Correlation between Uniaxial Compressive Strength of Tuff and the
Porosity (Small and Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004)

16

www.manharaa.com




5
©
©
©
S
©
© g
; b = =
— ) l
= 5 _ ! =Ry
i A g ! i S S W
! WJ) g m - m. ||||| P = >
| v <t .m, E 4 4 : | — Q
_ m m W m m g ; “ o>
g o |
_ Dw ~ =728 3 _ m I £
_ o 2 1§35 1 _ 2
: R <5 28 5 £ 1534 1. L8 s E
= | a4 .r - =2 m E 5 Bl 11 g i ﬁku ,_r =)
pon | : & S 3 3% B -
H i) o~ ;o m m I i =)
a8 O < BaE ! _ > <
. — & Q8 | [ =
! ; 55 2B BE _ ] 25
g = m m 2 = . |m||||-". ||||| FE LN
< 52 BEEE W o i8¢
s i + = B | i o
H..&+#+W++._w+ " m m 5 1 W s m .n.m. POu o
i |T++.M%+ W.?.M. | " .IuA n = " " _ _ . 8 — ml
T gas 1325 , N A - SR
.:ﬁ...v.um._..+++. ! £ o | S = i ! X gy
il [ | 2i X8 ki aeiia £ " “ _ e o
i S - - “ ! ! ! “ E9q
|||||||| .m_m ¥ ot ! T F .,gT _ _ | _ _ m D £
¥ g | | , ! c Q
S < ! ] S Y%= ! i | A - o O
+op e | ° o | 1 | F-== T
oA I 172} ) i = | ) L =
3 E il F R . B ” o 28
| = o | ! | ; ! _ o @
_ mm 338 LIV o <k
| " —
|23 5 o e sa
3 8% S o e R | _ 8 &
. B = S . N T 5%
123 .- | | | | | | o L
- g2 =0 R 1. 84
| - = _ ri+iiiﬂiﬂiﬂ o2
i o e | | ! i i
B S 3 I L o 8
| |
[ 0% A T T S T Sc
| o IR - =y
| n_ru | | w_w m @ e LL
| = .
__ - WJ F @ m_“mn_s_:ﬁmcwhﬁozgn_Eou_ﬁx«_::
; e L
g (eds) sninpow s 5uno)




25

T T T T
: } : } O Large-Diameter Lith. tuff lab tests, room dry
I | | |
1 i 1 i B Large-Diameter Lith. Wil lab tesis, saturated
1 | ] 1
i | L i | — — — Expon. {Large-Diameter Lith. fuff lab tests, room dry)
| | a | |
W= e - = bl Expon. (Large-Diameter Lith. tuff lab {ests, saturated)
l | i | om | | |
1 | 1 | | I |
I | l | | | |
| I FIL | I | i
= 1 I l I I | I
o | | | | | | |
B Bt+-———————- R T E AR L . Y ey e e TEE R S AR CLNE PP, e R O RS
- 1 | I I I I I
- | | | I | |
2 i I | i I I I
3 | | i I i i
2 | [z | | | | |
» I RE=0,1559 i i | | !
o I 1 | | 1 |
N [ S e e e [ S e e P I
s | : | | | | |
| | | | | | y=33 45260
! ; ! | ! R*=06925
1 | ] 1 I | T
l | | I | I |
; ‘ u ‘ 1 1 L
Buccoasasss Hesmamasas L ilhes s e o g s g e S e D i e s e il S g i
> i i l " a i i i
1 | ] 1 I | I
1 l 1 I I 1 I
| I | | | | |
| | | | I | I
i | i i I i i
i I | | i | i
I | 1 | | 1 |
0 : ! ! : : ! :
o 5 10 15 20 25 3o 35 41

Lithophysal Porosity (Parcent)

Figure (2.7) Correlation between Young’s Modulus of Tuff and the Porosity
(Large-Diameter Cores of Topopah Spring Tuff) (Rigby 2004)

40
0 Large-Diameter Lith. tuff lab tests, room dry
§  Lage-Tiameier Lith. tuff &b tests, salurated
‘55__
= = Lirear (Large-Diameter Lith tuf fab tests, room dry)
o—| inear (Large-Diameter Lith. 1uff lab tests, saturated)
Hf=——mm=—==== e e e e e e M s o
g I a |
= | |
| |
eyl MM
2% b "
£ | o
I I
.g A | s -
5‘ -------------- '}"“““"7—:— ————————————
a8 | |
&= 1 |
o | |
e L e e T b
o |
a i
£ |
= H I
(¢ A O~ RN -
I
I |
| |
| |
e s ssmm s fesusnsszEnay
| |
| |
| |
0 ; |
i} 5 0

Young's Modulus {GPa)

Figure (2.8) Correlation between Uniaxial Compressive Strength and the Young’s
Modulus Large-Diameter Cores of Topopah Spring Tuff (Rigby 2004)

18

www.manaraa.com



i1 o Lirge-corm lah lasta, rmom dry (1885, 2007)
50 b » Larpe-ooie lab losis, Hh.n!t'ud [002)
\ | + UDEE (AR=1:1, Dayg=17 min, 90 cirches)
40 o
g o \x - :
o =0 .
20 I = - .y . °
y=51.648e" 2 Hﬁg\ i 3
10 - R*=0.9344 g—a
ﬂ y o z bk q TET T
000 005 010 015 020 025 030 035 040

Lithophysal Porosity

Figure (2.9) Comparison of UDEC Numerical Models to Experimental
Tests on Lithophysal Tuff Regarding Uniaxial Compressive Strength (UCS)
(Christianson et al., 2006)

25 n Large-cora (ab tests, toom dry (1885, 2002)
s | = Large-cors lub lssts, saturatid (2002)
20 5|« UDEC (AR=111, Davg=17 mm, B0-mm circiea} .
“'."-".‘_H‘_ .3-“ | I = |
g'ﬁﬁ T .
a0 | p=tomeren] Tl . |
R =0.003 s
5 . T
'ﬂ g : . N . . "
000 005 010 015 020 025 030 035 040
Lithophysal Porosity
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Figure (2.11) Photograph of Some Tuff Specimens Tested by Avar

(2002)
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Figure (2.12) Correlation between Mechanical Properties of Tuff and the Total Porosity
(Avar 2002)
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Figure(2.13) Photograph Some Tuff Specimens Tested by
Hudyma et al. (2004)
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Figure (2.14) Correlation between UCS versus the total Porosity (Hudyma et al., 2004)
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Figure (2.15) Photograph of Large-Diameter Cores of Tuff; (a) Samples before testing,
and (b) Samples during testing (Costin et al., 2009)
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Figure (2.16) Correlation between Uniaxial Compressive Strength and the
approximate (total) Porosity (Costin et al., 2009)
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Figure (2.17) Correlation between Uniaxial Compressive Strength and Young’s
Modulus (Costin et al., 2009)

2.2.2 Basalt

The variations of mechanical properties of vascular basalt due to porosity
changing were investigated experimentally by Al-Harthi et al. (1999).The vesicles in the
basalt were non-connected pores, spherical to irregular in shapes, with sporadic to
densely spatial distribution (Fig. 2.18a). Their sizes (diameter) range from a fraction of a
millimeter to few centimeters (Fig. 2.18b & c). The vesicle porosities (from about 0 to
about 65%) were found using two methods; image analysis technique (on thin cross-
section of basalts) and weight and volume correlations. Both dynamic and static
properties of vesicular basalt were explored. For the dynamic properties, the effects of
vesicle porosity on both dynamic modulus of elasticity and dynamic Poisson’s ration
were explored using non-destructive technique of sonic pulse velocity measurement for

the specimens. Regarding the static properties (uniaxial compression, static modulus of
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elasticity, and static Poisson’s ratio), the same basalt specimens used in the dynamic
properties study were tested under uniaxial compression to find the variation of strength
and deformation of the basalt with vesicle porosity. It was found that the static property
estimations can be done with higher confidence compared to dynamic property
estimation. According to the results, proposed in two part correlations as shown in Figure
(2.19), a sharp reduction in both UCS and modulus of elasticity was observed until a
porosity value of 20% reached. For the porosity > 20%, a relatively mild reduction was
obtained. The correlations between both UCS and modulus of elasticity with vesicle
porosity were good. For the UCS, the two-part correlations were linear, and the

correlations were as follows

For Porosity <20 UCS (MPa) = 274 — 8.51  Porosity(%) R?=0.98 ... (2.13)

For Porosity > 20 UCS (MPa) = 104 — 1.01 = Porosity (%) R? =0.96 ...(2.14)

For the modulus of elasticity, Young’s Modulus (E), the correlations was initially
logarithmic and then linear, see Figure (2.20). The best-fit regression equations were as

follows

For Porosity <20 E (GPa) = 75.7 —9.38 * In Porosity (%) R?> = 0.95 ...(2.15)

For Porosity >0 E (GPa) = 48.4 — 0.675 * Porosity (%) R?=0.95 ..(2.16)
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Regarding the Poisson’s ratio, it increased as the porosity increased linearly until a
porosity value of 20%, and became more or less constant for porosity values > 20%. The

best-fit regression equations are:

For Porosity <20 v = 0.189 — 0.002 * Porosity(%)] R? = 0.96 .. (2.17)

For Porosity > 20 v =0.235 R? = 0.003 ...(2.18)

Although supported by several previous researchers such as Kelsall et al. (1986) and
Tugrul and Gurpinar (1997), the results, except the second part of Poisson’s ratio, showed
good relationships (see the correlation coefficients) and well defined which are rare in
researches in rock mechanics field. No explanations are given by the researches. In
addition, the effects of vesicle shapes and vesicle spatial distributions have not been

addressed.

Figure (2.18a, b, & c) Photograph Samples of Vesicular Basalt Tested by
Al-Harthi et al. (1999).
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Figure (2.19) Correlation between Uniaxial Compressive Strength of
Vesicular Basalt and the actual Porosity (Al-Harthi et al., 1999).
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Figure (2.20) Correlation between Young’s Modulus, E, of Vesicular
Basalt and the actual Porosity (Al-Harthi et al., 1999).
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2.2.3 Chalks

To study the effect of porosity on strength of very porous chalks, Palchik and
Hatzor (2004) tested twelve cylindrical specimens under uniaxial compression. The
specimens, 52mm in diameter with length to diameter ratio of approximately 2.0, were
taken from Adulam formation in Israel having total porosity ranging from 19% to 32%.
The chalk specimen total porosities were calculated using the same method as Avar
(2002); using this equation n = [(1-(y4/Gsyw)]. However, the specific gravity, G, was fist
assumed to be 2.7 and then validated by using Helium porosimeter. In the porosity
validation, a very good linear correlation (R? = 0.99) between the calculated (assuming Gs
= 2.7) and measured porosity values was obtained. No information about pore size and
distribution is given. Returning to the previous discussion regarding tuff samples, test
results with small size samples are not indicative, however, the unaxial compression test
results showed a decrease in compressive strength (uniaxial compressive strength - UCS)
with an increase in the porosity following an exponential law. Figure (2.21) shows the

result of the twelve tested samples. The best fit-regression equation is:

UCS(MPa) = 273.15 e~0.076xPorosity (%) R2 = (087  ..(2.19)

The effect of porosity on the Young’s modulus is not addressed.
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of Chalk and Porosity (Palchik and Hatzor 2004)

2.3 Rock-like Materials

Until nowadays, few studies have been carried out to explore the effects of void
porosity on the engineering properties of the rocks using rock-like materials. In this
section, most of them will be reviewed.

Avar (2002) studied the influence of void porosity on the mechanical behavior of
rock-like materials (gypsum plaster and urethane) both experimentally and numerically.
The plaster cubes, 150 mm on side and contained either open ended cylindrical tubes or
spherical Styrofoam inclusions were tested under uniaxial compression loads. The open
ended cylindrical tubes, with diameters ranging from 6.4 mm to 108.7 mm giving
porosities ranging from 4.9 to 44.2%, were distributed either uniformly or randomly
throughout the cubes. While the spherical cavities, ranging from 25.4 mm to 101.6 mm in

diameter giving porosities ranging from 8 to 40%, were distributed randomly only. The
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urethane cubes (with 150 mm per side) contained open ended cylindrical tubes distributed
uniformly only, and tested under biaxial compression loads. The urethane is a rubber type
material produced under a controlled environment and used in this study in order to
explore the effects of porosity on the elastic properties of elastic materials. Regarding the
numerical analysis, two-dimensional finite difference FLAC software was used to
simulate both the urethane cubes and the plaster cubes containing open ended cylindrical
tubes. Both numerical analysis and experimental testing showed a very good correlation;
the numerical normalized Young’s modulus decreased exponentially with increasing
porosity like those of the experimental tests on the urethane cube as shown in Figure
(2.22) and the following two equations

E

(E_)Expeimental = g~ 0:023+Porosity(h) R? = 0.9664 - (2.20)
o
E o

(E—)Numerical = g~0.0215+Porosity (%) R? = 0.9899 ..(2.21)

]

For the plaster cubes contained open ended tubes, the numerical results overestimated the
Young’s modulus as shown in Figure (2.23). This was attributed to either modeling a
three-dimensional material in two dimensions, or ignoring the effect of friction between
the steel platen and the plaster cubes, or both. Regarding the experimental tests on the
plaster cubes contained open ended tubes, the results showed that the plaster cubes
contained uniformly distributed open ended tubes had higher compressive strength and
Young’s modulus compared to those plaster cubes contained randomly distributed open
ended tubes. This was attributed to existing larger plaster columns between the uniformly
distributed holes; larger bridge distances between the holes. Figures (2.24) and (2.25)

show the experimental results for plaster cubes. It was also concluded that, since its
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mechanical properties closer to the ones of lithophysal tuffs, the gypsum plaster was
better analog material to simulate lithophysal tuff rocks compared with urethane.
However, the Hydro-StoneTB® is better analog material than both (Rigby 2007).
Regarding the experimental tests on the plaster cubes contained spherical Styrofoam
inclusions, the results gave higher strength and stiffness compared to those contained
open ended cylindrical tubes, see Figures (2.26) and (2.27). This was attributed to the
effect of hole shape; spherical Styrofoam inclusions are localized inside the cube and
don’t cross them from one side to the other like the open ended tubes. This will leave a
solid zone which in turn leads to stronger and stiffer material. Regardless of distribution
of voids in the cubes, the following correlation were obtained from the data in Tables

(6.2) and (7.6) in the author’s dissertation.

Cubes with sphers, UCS, (Psi) = 1775.9 x e~ 0-04Porosity() p2 — 085 .. (2.22)
Cubes with sphers, E, (Ksi) = 444 x ¢=0.03*Porosity(%) R?=082 ..(2.23)
Cubes with tubes, UCS, (Psi) = 1439.2 x g~ 0:049+Porosity()  RZ = 071 ..(2.24)

Cubes with tubes, E, (Ksi) = 438.6 ¢ ~0:042+Porosity(%) R?=0.823 ..(2.25)

In an experimental study carried out by Hudyma et al. (2004), thirty four plaster
specimens, both cubical and cylindrical, were tested under uniaxial compression loading
to mimic tests on lithophysal tuff rocks. The cubic plaster specimens tested in this study,
fourteen cubes, contained spherical Styrofoam inclusions ranging from 25.4 to 102 mm in
diameter, and having void porosity (macroporosity) starting from 5 to 35%. The twenty

cylindrical specimens (50.8 x 101.6 mm) contained either spherical Styrofoam inclusions
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(ranging from 6 to 8 mm diameter and having porosity from 7.4% to 37.6%) or
ellipsoidal air injected bubble (having narrow porosity range from 4% to 7.8%).
Regardless of specimen shape, the wide spreading results displayed non-linear
(exponential) reduction in UCS data with increasing porosity giving the following
equation:

UCS, 6., (MPa) = 12.618¢~0-0415+Porosity(%) R2=038 ..(2.26)

No clear effects of void shapes on the mechanical behavior of the analog materials were
adopted. However, as can be seen from Figure (2.28), the specimens containing regular
voids, specimens contain Styrofoam inclusions, are more uniformly distributed around
the regression curve comparing to the specimens containing irregular air injected bubbles.

Erfourth (2006) studied the mechanical behaviors of rock-like material under
uniaxial compression both experimentally and numerically. In the experimental tests,
different size cylinders of plaster of Paris (95 samples) containing spherical Styrofoam
inclusions (3, 12.7, and 25.4 mm in diameter, and having porosity from 0 to 30%) were
cast and tested under compression. Regarding the spherical Styrofoam inclusions of 3 and
12.7 mm in diameter, the cylinder size was 50.8x101.6 mm. While, for the spherical
Styrofoam inclusions of 25.4 mm in diameter, two different sizes of cylinder were used,
76.2x152.4 mm and 101.6x203.2 mm. For the numerical analysis, the experimental
specimens were modeled in Itasca’s FLAC3D (finite different method) using linear-
elastic material model to investigate the stiffness and Mohr-Coulomb material model to
investigate the strength. The results had high scattering for both strength and elastic

modulus with average correlation coefficients. The results of normalized uniaxial
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compressive strength displayed a mediocre (exponential) relationship, see Figure (2.29),

giving the following equation:

Normalized UCS = 0.9464 x ¢~0-04Porosity(%) R? = 0.67 .. (2.27)

In addition, from Figure (2.30), it can be seen that the specimens containing small
spherical Styrofoam inclusions, 3 mm in diameter, gave higher strength but lower
correlation coefficients compared to the specimens containing larger spherical Styrofoam
inclusions, 12.7 mm or 25.4 mm in diameter. This attributed partly to sample preparing
deficiency; specimens containing uniformly distributed small voids (3 mm) was
problematic. For the elastic properties, the data showed that the Young’s modulus
decreased linearly with porosity increasing as shown in Figure (2.31). However, void size
had less effect on Young’s modulus, see Figure (2.32); therefore, they did not give a very

good relationship as shown below:

E (GPa) = —56.482 * Porosity(%) + 3563.8 R2 =044 ..(2.28)

This was attributed to the sensitivity of the Young’s modulus with respect to the
variations of void size and distribution. This attribution was supported by the numerical
analysis; since the void size and distribution can be controlled in the numerical analysis
more effectively than in the experimental tests, the numerical Young’s modulus data
showed less scattering, see Figure (2.33). In general, the numerical results for both elastic

modulus and strength followed trends similar to those of the experimental results; see
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Figures (2.33) and (2.34). However, the scattering was higher for the uniaxial
compressive strength, UCS.

In an attempt to study the influence of void geometry on engineering properties of
lithophysal tuff using rock-like material, Righy (2007) tested fifty two Hydro-StoneTB®
cubes contained open ended longitudinal openings (voids) with different sizes, shapes,
and distributions. The research was a part of the Cooperative Agreement No. DEFC28-
04RW12232 between the U. S. Department of Energy and the Nevada System of Higher
Education (NSHE). Cubes (15 cm per side) contained three different shapes of voids
(circular, square, and diamond) arranged in different void pattern types, three patterns for
circular voids (A, B, and C)and two void patterns for each of the square and diamond
voids(A and B), were tested under uniaxial compression. Different patterns represented
different randomly generated void geometries. Regarding the void sizes, the circulars
openings had three different diameter, 12.7 mm, 21.8 mm, and 31.1 mm, while both
square and diamond voids had two different sizes; large (15.6 mm on side) and small (22
mm on side). In addition to the cubes contained unisize circular voids, cubes contained
mixed circular voids were also tested. The void porosities were ranging from 5% to 20%.
The high scatter results displayed that the uniaxial compressive strength and Young’s
modulus decreased linearly with increasing void porosity as shown in Figures (2.35) and
(2.36). The results are also discussed in Chawla (2007). The best fit-regression equations

for normalized values are

Normalized UCS = —0.02 x Porosity(%) + 0.57 R? =0.68 ..(2.29)
Normalized E = —0.01 * Porosity(%) + 0.78 R? =0.36 ..(2.30)
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The results did not show any dependency of Young’s modulus on void size shape (at
similar values of porosity), but a slight to moderate correlation between strength and void
shape and size. However, diamond and large size voids led to the highest reduction in the
uniaxial compressive strength. This was attributed to the likeliness of shape and size
dependency on both orientation of the voids and average bridge length (distances
between voids). The three different void patters did not show significant differences in
the Hydro-Stone TB® properties; the Young’s modulus and strength values for each of the
three patterns yielded similar results. No explanation has been mentioned regarding
ineffectual of the void patterns on the mechanical properties of Hydro-Stone TB®.

In a more recent attempt, Nott (2009) studied the effects of void porosity on
tensile strength of rock-like material, Hydro-StoneTB®, both experimentally and
numerically. In the experimental part, both direct and indirect methods were used to find
the rock-like material tensile strength. Since the direct method (Dog Bone specimens
with 100 by 100 mm cross section) was not successful in evaluating the tensile strength,
only indirect method, Brazilian tests, were used to find the tensile strength of the rock-
like material and its variation with regard to void porosity changes. For the Brazilian
tests, twenty porous discs (101.6 mm in diameter and 50.8 mm long specimens)
contained holes (open ended tubes) were tested under compression; indirect method.
Holes with different sizes (17.9 mm and 25.4 mm) and number (2, 4, and 8 holes to
provide different porosities ranging from 6.2 to 18.7%) were distributed throughout the
disks. In the numerical analysis, discs in the Brazilian tests were modeled in UDEC

software using plain strain assumption. The results showed that the tensile strength
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decreased with increasing porosity, and the numerical results were consistent with the
experimental results as shown in Figure (2.37); both numerical analysis and experimental

results followed power law:

(UTS) gxperimentat (Psi) = 954.1 * (Porosity(%))~%8%%¢  R? =0.993 ..(2.31)

(UTS) gxperimentar (Psi) = 357.73 x (Porosity(%))™°°%  R*=0.96 ...(2.32)

In addition, it was found that that the UDEC software can successfully predict the

cracking patterns of the experimental test specimens.
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Figure (2.22) Normalized Young’s Modulus versus Total Porosity for Urethane
Cubes for both Experimental Tests and Numerical Models (Avar 2002).
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Parosity, %
Figure (2.23) Normalized Young’s Modulus versus Total Porosity for

Plaster Specimens Containing Cylindrical Tubes for both Experimental
Tests and Numerical Models (Avar 2002).
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Figure (2.24)Uniaxial Compressive Strength (o) versus Total Porosity for
Plaster Cubes Containing either Randomly Distributed Cylindrical Tubes or
Uniform Distributed Cylindrical Tubes (Avar 2002).
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Figure (2.25) Young’s Modulus versus Total Porosity for Plaster Cubes
Containing either Randomly Distributed Cylindrical Tubes or Uniform
Distributed Cylindrical Tubes (Avar 2002).
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Figure (2.26) Uniaxial Compressive Strength (o¢) versus Total Porosity for
Plaster Cubes Containing either Cylindrical Tubes or Styrofoam Inclusions
(Avar 2002).
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Figure (2.27) Young’s Modulus versus Total Porosity for Plaster Cubes
Containing either Cylindrical Tubes or Styrofoam Inclusions (Avar 2002).
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Figure (2.28) Correlation between Uniaxial Compressive
Strength and Porosity (Hudyma et al., 2004).
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Figure (2.29) Correlation between Normalized Uniaxial Compressive
Strength and Porosity (Erfourth 2006).

Normalized UCS data by void diameters + 3mm data

e 127mm data

® 254mm data
- Lingar (3mm data)
—Expon. (12.7mm data)
—Expon (25 4mm dala)

1.20

1.00

0.80 4

y=-0.0119x + 0.893
R*=0.207

Normalized UCS
(=]
a

¥ =0.9905¢" """
R =0.7774

0.20
y= 082617
R?=0.7092 L
0.00 . . , - e v . . !
0 5 10 15 20 25 0 35 40 45 50

Percent porosity

Figure (2.30) Correlation between Normalized Uniaxial Compressive
Strength and Porosity (Erfourth 2006).
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Figure (2.31) Correlation between Elastic Modulus with Porosity
(Erfourth 2006).
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Figure (2.32) Correlation between Young’s Modulus and Porosity
(Erfourth 2006).
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Figure (2.33) Correlation between Normalized Uniaxial Compressive Strength with
Porosity for both Numerical Models and Experimental Tests (Erfourth 2006).
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Figure (2.34) Correlation between Young’s Modulus with Porosity for both
Numerical Models and Experimental Tests (Erfourth 2006).
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Figure (2.35) Correlation between Normalized Uniaxial Compressive
Strength and Porosity (Rigby 2007).
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Figure (2.36) Correlation between Normalized Young’s Modulus and
Porosity (Rigby 2007).
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Figure (2.37) Correlation between Ultimate Tensile Strength and Porosity
for both Numerical Models and Experimental Tests (Nott 2009).

2.4 Relationship between Voids and Failure Modes

Depending on the expected in-situ stress-state conditions such as uniaxial and

triaxial compressive loading, failure modes of materials are necessary and helpful to

evaluate the behaviors of geo-structures or/and their foundations under different loading

conditions. Regarding geo-engineering materials containing substantial volume of

cavities, studying failure modes are even more important due to the detrimental effects of

the voids on the geo- materials’ mechanical behavior. Uniaxial compression testing of

rock-like materials with varying porosity may provide useful information regarding the

effects of porosity on the rock failure modes. Previous studies indicate that failure modes
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of rock-like materials are influenced by void porosity and void geometry (bridge
distances exclusively).

Hudyma et al. (2004) identified four failure modes for the cylindrical plaster
specimens as shown in Figure (2.38); spalling for void porosity range 0 — 5%, axial
splitting for void porosity range 5 — 10%, shear failure for void porosity range 10 — 20%,
and web failure for void porosity > 20%. However, they did not find a strong relationship
between failure modes and porosity for the cubic specimens; the specimens failed via a
combination of the four failure modes occurred in the cylindrical specimens.

Jespersen et al. (2010) concluded that, as bridge distance increases from 0.5 to 1.5
void diameters, the dominant failure mode is tensile failure (vertical to sub-vertical
tension fractures oriented approximately parallel to the applied axial load), see Figure
(2.39a). At a bridge distance of 1.5 void diameters, the dominant failure mode is shear
failure as shown in Figure (2.39b). At bridge distances greater than 1.5 void diameters,
the dominant failure mode returns to tensile failure as shown in Figure (2.39c). In sum,
according to previous research, the failure modes depend primarily on porosity and

bridge distance.

Failure
Mode

a b c
Spalling Axial Splitting Shear Failure Web Failure
0—5% 5—-10% 10 —20% > 20%

Macroporosity
Range

Figure (2.38) Failure Modes-Cylindrical Plaster Specimens (Hudyma et al. 2004).

44

www.manaraa.com



a- Tension Failure _
(Vertical to sub-vertieal fractures)

Figure (2.39a, b, & c) Failure Modes Cubic Plaster Specimens - Jespersen et al. (2010)

More details on the influences of voids on crack patterns and failure modes in
rocks and rock-like materials are discussed in Chapter 3 (sections 3.8 and 3.9) and

Chapter 4 (section 4.5).

2.5 Summary of the Literature Review
From the literature review, although the results show that the uniaxial

compressive strength and elastic modulus of rocks and rock-like materials decrease while
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void porosity increases, the general relationships between them are poorly defined and
unclear, and the data have high scatter (low to moderate coefficient of determination).
The effects of void size, void shapes, void orientation, and void spatial distributions have
not been explored clearly. In addition, almost all the correlations regarding the effects of
void porosity on the mechanical behaviors of rocks and rock-like materials are solely
drawn between the mechanical properties, mostly UCS and E, and the void porosity. In
other words, the effects of void size, void shape, void orientation, and void spatial
distributions have not been addressed in the correlations. It is believed that, besides the
porosity, those factors (void size, void shapes, and void orientation, and void spatial
distributions) are important as well.

This study aims to address the void size, void shapes, and void orientation, and
void spatial distributions and weigh there effects on the mechanical properties of roc-like
materials. It intends to find a better correlation between the mechanical properties, UCS
and E, of rock-like materials and void porosity considering the aforementioned factors; it
searches to see if the aforementioned factors can reduce the data scattering, in other
words increase the coefficients of determination of the correlations. In addition, since the
influences of void porosity and geometry on failure modes of rock-like material have
been addressed by very few researchers (only two researches so far), more attention about
the subject will be helpful in evaluating the geo-structures or/and their foundations under
different loading conditions. Accordingly this study also aims to explore the effects of

void existences on the crack pattern and failure modes in rock-like materials.
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CHAPTER THREE MECHANICAL CHARACTERIZATION OF BRITTLE

MATERIALS

3.1 Introduction

Matter, any physical substance surrounds us, becomes material if used or/and
processed by humans (Meyers and Chawla 2009). For instance, rock naturally is a matter,
but it becomes a material when used by humans as a construction material such as stones
in masonry or aggregate in concrete. Materials have different properties such as physical
properties, chemical properties, and mechanical properties. Hence, they exhibit different
behaviors under given condition. However, in engineering, it is the mechanical properties
which are essentially important for design purposes (Singh and Dwivedi 2009).

Mechanical properties of materials are those which describe the material behavior
under external loads such as strength, elasticity, rigidity (stiffness) plasticity, ductility,
brittleness, impact strength, hardness, and toughness (Meyers and Chawla 2009). They
depend on the bond forces between the materials’ crystal structure and flaws
(imperfections) within the crystal and among the crystals (Singh and Dwivedi 2009).
Mechanical properties are corner stone of mechanical characterization of materials.

The mechanical characterization of materials means studying the deformation and
cracking of materials under external loads which is vital for preventing failure of
materials in service (Meyers and Chawla 2009). Since rocks, including lithophysal tuff,
are typically considered as brittle material, this chapter is concerned with the mechanical

characterization of brittle materials under static load.
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3.2 Failure in Materials

Failure in term of material behaviors has various definitions such as (1) the
process by which the behavior of material changes from one state to another ((Bieniawski
et al., 1961; Andreev 1995), and (2) an irreversible alteration in the microstructure of the
material responding to excessive loads or deformations which leads to a change in the
normal material constitutive behavior (Kelly 2013). According to the most of failure
theories, failure occurs when some physical variable such as stress, strain, or energy
reaches a critical value. Regarding the stresses, the critical value might be the maximum
principal stress, the maximum shear stress or some more complicated function of the
stress components (Kelly 2013). Basing on various factors such as composition, aging,
and temperature, the mechanisms of failure of materials can generally be classified into
two main failure fashions, ductile and brittle (Runesson 2006; Pytel and Kiusalaas 2012;
Ugural and Fenster 2012). However, the differentiation between the two mechanisms is
not an easy process; to view a material as being either ductile or brittle (Christensen

2005).

3.3 Brittle Materials

Brittle materials, also called non-ductile materials, are typically those materials
which can not undergo considerable permenant deformation prior to failure (¢ < 0.05) and
do not exhibit an identifiable yielding (Norton 1997; Kelly 2013). Some examples of
brittle materials are concrete, rock, cast iron, and glass. Ductile materials are those can
undergo a considerable of permanent deformation (¢ > 0.05) before failure occurs and

exhibit identifiable yielding (yield strength) before failing (Kelly 2013). Examples of
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these materials are mild steel, aluminum, copper, and lead. Figure (3.1) show typical

stress-strain curves (o-¢ curve) for both brittle and ductile materials.

g e
K. .' : P :
(a) Brittle material (b) Ductile material

0.2%¢

Figure (3.1a &b) Typical stress-strain curves for (a) brittle material and, (b)
ductile material

3.4 Strength and Failure of Brittle Materials

Brittle materials should not be considered as weak materials. The just have little
or no plasticity; the stain is mainly elastic strain as shown in Figure (3.1a). The stress at
which failure occurs is called failure stress (fracture stress) and is usually symbolize by
or, See Figure (3.1a). However, if the yield point is required in brittle materials, offset
method is typically used (Pytel and Kiusalaas 2012). In this method, a line at a prescribed
offset strain, usually 0.2% (e = 0.002) of the stress-strain curve, is drawn parallel to the
initial tangent. The intersecting point between this line and the stress-strain curve is
considered as the yield point; see Figure (3.1a). Regarding the ductile materials, the stress
at which the stress-strain curve becomes almost horizontal is considered as the yield

point, and is usually symbolize by oy as shown in Figure (3.1b). In addition, the strain in
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ductile materials has two parts; elastic strain (e¢) and plastic strain (ep), Figure (3.1b). The
failure stress in ductile material is called ultimate stress (rupture stress) and is usually
symbolize by o, see Figure (3.1a).

Depending on their compressive, tensile, and shear strengths, brittle materials can
be divided into two types; even and uneven materials (Norton 1997). The even brittle
materials are those have equal compressive and tensile strength. The uneven brittle
materials are those have different strength for both compressive and tensile stresses;
compressive strength is higher that tensile strength. In addition, uneven brittle materials
are those which have greater shear strength compared to their tensile strength; their shear
strength is falling between their compressive and tensile strength (Norton 1997).
Accordingly, concrete, soil, and rock, are uneven brittle materials.

Regarding failure, brittle materials are usaually fractured with clean brakes at
failure (Norton 1997; Kelly 2013). According to Ugural and Fenster (2012), fracture
means creating new surfaces within the material under stress; separating into two or more
parts. Fractures are commonly occurring through the grains and termed as transcrystalline
failure (Ugural and Fenster 2012). They will be created due to normal tensile stress alone
if the materials are under tension forces, while in the materials under compression stress,
the fractures will be created due to some combination of normal compressive stress and

shear stress (Norton 1998).

3.5 Failure Criteria of Brittle Materials
The main objective of computing and understanding of stresses is to predict if a
given material will fail under a given external load; to predict strength value of the
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material. In some cases the stress conditions are very complex and the aforementioned
objective difficult to obtain. Therefore, failure data obtained from simple experimental
tests, uniaxial tensile or compressive tests, are used instead to predict strength of the
material under complex stress system; to check if it is fail or not. By this, a formula or an
equation is obtained to predict the failure, strength value, of the material under all
combination of stresses which is called material failure criteria or theories of failure.
These theories, failure criteria of materials, are classified into two main groups; one for
those materials fail by fracturing (brittle materials), and the other for those materials
yielding (ductile materials) (Pytel and Kiusalaas 2012).

Although, there are no universal failure criteria to correlate failure in a simple test
with failure due to complex stress condition, there are several theories that work well
enough for certain materials (Pytel and Kiusalaas 2012). Regarding brittle materials, the
most accepted theories of failure, failure criteria, are Maximum Principle Stress theory,
Mohr’s theory, Coulomb-Mohr theory, and Griffith’s theory (Sandhu 1972; Hertzberg
1996; Norton 1997; Gordon 2003; Meyers and Chawla 2009; Pytel and Kiusalaas 2012;

Ugural and Fenster 2012; Kelly 2013).

3.5.1 Maximum Principle Stress Theory (Rankine, Lame ', Clapeyron - 1858)

The oldest, simplest too, but least accurate theory of failure of brittle materials is
the maximum principle stress theory which credited to W. J. M. Rankine (1820-1872). It
assumes that an element of a stressed body fails by fracture when the largest tensile
principle stress exceeds the elastic limit in a simple tension test like uniaxial tension test

(Sandhu 1972; Hearn 2001, Pytel and Kiusalaas 2012; Ugural and Fenster 2012).
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In other words, according to the maximum principle stress theory any one of the
principle stresses reaches the ultimate strength of the brittle material (61 = 6y, Or 62 = 6y,
or o3 = o) failure should be occurred. Thus

(of —af) * (0f —0f) * (05 —0i) =0 - (3.1)
where 61, 6, a3 are principle stresses and ay is the ultimate (failure) stress in a simple
tension or compression test. Accordingly, the failure criterion according to the maximum

principle stress theory is:

(oF} _ ()] O3 _
—_— = +1 or S -|—1 or —_— = +1 (32)
oy oy Oy

Graphical representation for Eg. (3.2), in three-dimensional stress, will be a cubic
surface spaced symmetrically about the origin of coordinates for even brittle materials
(Sandhu 1972). For uneven brittle materials, the cubic surface will be spaced
asymmetrically about the origin of coordinates. For two-dimensional stress (3 = 0),

plane stress condition, the failure criterion for even materials is:

B-F1 or Z=7F1 ..(3.3)

oy oy
For uneven brittle material, since the ultimate stress (o) is not the same in both

tension and compression, the failure criterion for uneven materials will be:

01 02 01 03
—=-1 or —=-1 ..(34)
Gut Gut O-‘LLC O-‘U,C

where o is the materials’ ultimate tensile strength, and oy is the materials’ ultimate
compressive strength.

Graphical representation for Eq. (3.4) is shown in Figure (3.2). The failure
criterion is represented by the outline of the shaded squares and rectangles. Any point,

which corresponds to the principal stresses in the materials, lying on or extending the
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shaded area represent failure. However, if it falls inside the shaded area, the material will
be in fail condition (Pytel and Kiusalaas 2012; Ugural and Fenster 2012).

When the maximum principle stress theory is using to predict the failure in brittle
materials, the following notes should be borne in mind (Sandhu 1972; Hearn 2001):

1- For a case in which o3 is compression and both ¢; and o, are tension stresses,
according to the maximum principle stress theory, failure can occur when the
minimum principle stress o3 reaches the value of the elastic limit stress in
compression, ayc, even if the elastic limit stress in tension, ey, has not been

reached (Hearn 2001). Therefore, one criterion will be:

03
—=-1 ..(3.5)

O-uc
2- For a case in which 61 = 6, = 63 = 6y, failure should not be expected; it rather

causes a volume change only (Sandhu 1972).

» 0

Lo S Lo, T

Guc Tut

Figure (3.2) Maximum Principle Stress failure criterion.
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3.5.2 Mohr’s Theory (1900)

To predict fractures in uneven brittle materials, the Mohr’s theory of failure is
considered as an accepted failure criterion (Norton 1998; Pytel and Kiusalaas 2012;
Ugural and Fenster 2012). The theory can be applied using well-known Mohr’s circles of
stress incorporating with the results of simple tests such as uniaxial loading tests (Norton
1997; Pytel and Kiusalaas 2012; Ugural and Fenster 2012). Two Mohr’s circles can be
drawn using the ultimate tensile stress, as the maximum principle stress in tension, (cyi)s,
and the ultimate compressive stress, as the maximum principle stress in compression
(ourr)e- And then by drawing two lines that are tangent to the circles, the failure envelope
for Mohr’s theory can be obtained, see Figure (3.3). The Mohr’s theory predicts failure if
the Mohr’s circle of any state of stress in the material tangent to, or extends beyond the
failure envelop (Pytel and Kiusalaas 2012).

From Figure (3.3a), between points A and B, the maximum and minimum principal
stresses, there are unlimited vertical lines like PC line which represent the states of stress
on planes with the same normal stress but different shear stress. According to Mohr’s
theory, the weakest plane of all planes carrying the same normal stress in the material is
the plane which has maximum shear stress; point P in Figure (3.3a) (Sandhu 1972; Pytel
and Kiusalaas 2012; Ugural and Fenster 2012). In this theory the effect of the
intermediate principle stress, due to its negligible effects on the failure stress, is not
considered.

From Figure (3.3b), if besides ultimate tensile stress (simple tension) and ultimate
compressive stress (simple compression), the ultimate shear stress obtained from torsion

IS too used to construct the failure envelope for Mohr’s theory, a new failure envelope
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will be constructed, and the theory becomes modified Mohr’s theory (Pytel and Kiusalaas
2012; Ugural and Fenster 2012). The tangent lines to the three circles, AB and A'B’, are

now the failure envelopes; Mohr’s envelopes.

A
A Simple
Simple 3‘/ tension
3 Plo, 1) compression
= 7
B'
I .
A C| B A’ Torsion

Failure envelope
(a) (b)

Figure (3.3) Mohr’s Theory (a) Mohr’s circles of stress; (b) Mohr’s envelopes
(Ugural and Fenster 2012)

3.5.3 Coulomb-Mohr Theory

The Coulomb-Mohr theory, also called internal friction theory and established in
1900, assumes that fracture occurs in materials when the ultimate normal stress, tensile or
compressive, reaches a corresponding critical value; strength of the material in tension or
compression. It is a modification of the maximum principle stress theory with
considering that the maximum shearing stress in frictional materials is depending on
internal friction of the material (Ugural and Fenster 2012). In addition, the effect of the
intermediate principle stress is not considered in this theory too.

Coulomb, in 1773, hypothesized that failure occurs on a plane within a material
when the shearing stress is equal to the sum of the cohesive strength and frictional
strength (Sandhu 1972). This can be written as follow

T=c+uo ..(3.6)
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where 7 is shear stress along the plane, o is normal stress on the plane, ¢ is cohesive
strength of the plane, and p is coefficient of friction of the plane. The plane is also called
failure plane.
Ugural and Fenster (2012) rewrote Eqg. (3.6) as follow

T=b+ao ..(3.7)
Note that a and b are corresponding to cohesive strength, c, and coefficient of friction, y,
respectively; material properties. Bearing in mind the assumption that the failure is not
affected by the intermediate principle stress, the maximum shear stress and the
corresponding normal stress can be written in terms of the principle stress as follows
(Ugural and Fenster 2012):

Principle 0,45 ; Principle o,,in —btas Principle 0,45 -2I- Principle o.,in . (38)

To obtain Coulomb-Mobhr criterion in plane stress condition, four combinations of
stresses (cases) should be considered (Ugural and Fenster 2012); Case | (both o1 and o>
are tensile — first quadrant), Case Il (o1 is compressive and o, is tensile - second
quadrant), Case 11 (both 6; and o, are compressive — third quadrant), and Case IV (o1 is
tensile and o, is compressive - fourth quadrant).

Case | (both 6 and o, are tensile — first quadrant): In this case of biaxial tension, both
o1 and o, have the same sign on o1, o7 plane (o1 > 0, o2 > 0), the o3, becomes the minor
principle stress (o3 = 0). Therefore, Eq. (3.8) becomes:

Maximum Principle Stress — Minimum Principle Stress
2

T =

_ (010r2) — (03) _ (010r2) — 0 _ (01 ) or (02 )

> : .(3.9)
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Furthermore, since neither o1 nor o, can be higher than the material’s ultimate tensile

strength (oyt), hence, the failure criterion for Case I will be (Ugural and Fenster 2012)

01 %)
—=1 or —=1 ..(3.10)
Out Out

Case |l (61 is compressive and o> is tensile - second quadrant): When o; and o, are of
opposite sign on ai, g, plane (o1 < 0, o2 > 0), instead of o3 (03 = 0), the o1 becomes the
minor principle stress. Therefore, Eq. (3.8) becomes:

0; — 01
2

.. (3.11)

= b+a*(02+01>

In addition, to find the values of a and b, the following conditions should be considered:
0, = —0y,. When o,=0 ..(3.12a)
o, = 0,y Wwhen o =0 ..(3.12b)

Combining Egs. (3.12a&b) with Egs (3.11), we obtain

a= Out — Oyc b= Oyt * Oyc (3.13)
- —’ L ans .
Oyc + Oyt Oyc + Oyt

Substitute Eq. (3.13) into Eq. (3.11), the following failure criterion is obtained for Case

2 _ 2 - ..(3.14)

Case Il (both 61 and o, are compressive — third quadrant): In this biaxial compression
case, like Case I, both ; and o, have the same sign on a1, o2 plane (o1 < 0, o2 < 0).
However, here the o3 (05 = 0) becomes the major principle stress. Therefore, Eq. (3.8)
becomes:

Maximum Principle Stress — Minimum Principle Stress
T =
2

_ (03) — (010r2) _ 0 — (010r2) _ (_0'1 ) or (_0'2 )

= 5 5 > > ..(3.15)
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Again, noting that o1 and o, cannot be higher than the material’s ultimate tensile strength
(ou). Hence, for Case Il (o1 > 0> and o> > 01), the failure criterion is (Ugural and

Fenster 2012)

— =1 o —2=-1 ..(3.16)

Case |V (o1 is tensile and o, is compressive - fourth quadrant): When o; and o, are of
opposite sign on a1, g, plane (o1 > 0, o, < 0), instead of o3 (035 = 0), the o, becomes the

minor principle stress. Therefore, Eq. (3.8) becomes:

01— 0y
2

_ b+a*(01+02>

. (3.17)

In addition, to find the values of a and b, the following conditions should be concerned:
0, = 0,; When od,=10 ..(3.18a)
o, = —0y. When o;,=0 ...(3.18b)

Combining Egs. (3.18a & b) with Egs (3.8), we obtain

a= Out — Ouc b= Oyt * Oyc (3.19)
- —’ s ans .
Oyt + Oyc Oyt + Oy

Substitute Eq. (3.19) into Eq. (3.17), the following failure criterion is obtained:

o o
L -2 =1 .. (3.20)

Out Ouc
The graphical representation of the Coulomb—Mohr theory can be obtained
through plotting the expressions in Egs. (3.10), (3.14), (3.16), and (3.20) for the all four
cases as shown in Figure (3.4). The Coulomb-Mohr theory predicts failure if any state of
stress in the material lay on, or extends beyond the shaded area in Figure (3.4). Regarding

pure shear, point a in Figure (3.4) represents the boundary point.
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Figure (3.4) Coulomb—Mohr criterion

3.5.4 Griffith’s Criterion of Tensile Failure (1921)

P

Theoretically, strength of any substance comes from the bonds between the

substance’s molecules (cohesive forces between atoms of the substance) (Jumikis 1983;

Franklin and Dusseault 1989), and it is about ten percent of the Young’s modulus, 0.1 E

(Anderson 1995; Meyers and Chawla 2009). However, in reality, due to existence of

natural flaws (microfractures) in almost all materials, it is well known that the true

strength is usually lower than the theoretical strength. This observation led Griffith to

adopt a new criterion to predict failure rupture in brittle materials that has later become
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one of the most famous theories in materials science (Jumikis 1983; Franklin and
Dusseault 1989; Roylance 2001).

Griffith elucidated that the difference between the theoretical and the actual
strength is due to the natural defects (thin flat, narrow, elliptical uniform microcracks,
also called Griffith’s cracks) in brittle materials which act as stress riser which in turn act
as strength reducer; stress concentrations at the crack tips lead to lower the fracture
strength of the materials (Jumikis 1983; Franklin and Dusseault 1989; Roylance 2001).
According to Griffith theory, using the Minimum Strain Energy theorem, crack
propagation occurs when the released elastic strain energy is at least equal to the energy
required to generate new crack surfaces.

Consider an infinite plate with t thickness containing a crack with length of 2a
(Figure (3.5a)). When the crack is introduced into the unstressed plate, an increase in the
surface energy is produced due to creating two new crack surfaces. Accordingly, the
increased surface energy equals (Meyers and Chawla 2009):

Increased surface energy = 2at (2y;) ..(3.21)
where vs is the specific surface energy, i.e., the energy per unit area.

When the plate is subjected to a tensile stress, o, through the remote ends as
shown in Figure (3.5b), the crack opens up and the stored elastic energy is released.
According to Meyers and Chawla (2009), for an infinite plate with t thickness containing
a crack (Figure (3.5b)), the released elastic energy is approximately equal to the shaded
are in Figures (3.5b & c). Recalling that the elastic energy per unit volume for a stressed
solid body is equal to half of the area under the linear part of a stress-strain curve, 6*/2E,

the released total strain energy can be found from multiplying the elastic energy per unit
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volume by the volume over which elastic energy is released (or 2 na’ t - the volume of the

shaded ellipse in Figures (3.5b & ¢)). Thus

noa?t

Total strain energy released = ..(3.22)

The difference between the total strain energy released due to the stress and the increased
surface energy due to the crack introduction into the plate is equal to the change in
potential energy of the plate, U, and can be found by subtracting Eq. (3.22) from Eq.
(3.21), or

nola’t
E

U =2at (2y,) — ..(3.23)

The maximum stress at which the crack is still stable and does not propagate (equilibrium
condition) can be found by equating to zero the first derivative of Eq. (3.23) with respect

to the crack length. Thus

2Ey,
Ta

..(3.24)

Omax =

Accordingly, Griffith obtained his failure criterion from Eq. (3.24) by assuming
that the maximum stress is the stress required for crack propagation (failure stress) as

follows

2Ey;
mwa

2E
For plane strain .... Ofgilure = ’ﬁ ..(3.26)

where oy is the applied stress, a is half the crack length, E is the modulus of elasticity of

For plane stress .... Ofailure = ..(3.25)

the material, s is the specific surface energy, v is the Poisson’s ratio.
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Griffith failure criterion was originally adopted for ideally brittle material (glass
rods - very brittle material) (Jumikis 1983; Franklin and Dusseault 1989; Roylance 2001).
However, there are some brittle materials which not ideally brittle and normally undergo
plastic deformation prior to failure (fracture); plastic deformation in the material near the
crack tip (blunting of the crack tip) causes energy dissipation which in turn leads to an
increase in the fracture stress; relaxing stress concentration by increasing the radius of
curvature of the crack at its tip (Roylance 2001; Meyers and Chawla 2009). Accordingly,
the Griffith’s equation was modified by Irwin and Orowan to be suitable for no-ideal
brittle materials by including the plastic work, vy,, into the total elastic surface energy
necessary for extending the crack wall. The Griffith’s equation can then be rewritten as

follows (Roylance 2001; Meyers and Chawla 2009)

2E(ys +
For plane stress .... Ofailure = /% ..(3.27)

2E(ys +
For plane strain .... Ofqilure = % ..(3.28)

where vy, is plastic work. Since the vys is relatively small compared to plastic work y, (vs =

0.1yp) (Meyers and Chawla 2009), the Eqgs. (3.27) and (3.28) can be rewritten as follows:

2E
For plane stress .... Oraiture = ﬂ(;/p) ..(3.29)
2E
For plane strain .... Ofaiture = % ..(3.30)
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Figure(3.5) A plate of thickness t containing a crack of length 2a. (a) Unloaded
condition, (b) and (c) Loaded conditions (Meyers and Chawla 2009).

3.6 Fracture Mechanics

An existing crack within a material may stay intact under a given condition of

loading and environment (Roesler et al., 2007). These types of crack are called stationary

cracks (or non-propagating cracks). If the loading and environment conditions are

changed, the crack size may change too; the crack may extend and propagate. The branch

of mechanics which deals with the conditions of loading and environments which causes

an existing crack to extend to a critical size at which an instant fracture occurs is called

fracture mechanics (Roesler et al., 2007; Ugural and Fenster 2012). Regarding brittle

materials, fracture mechanics deals with the conditions of loading and environments

under which the existing crack extends rapidly to a critical value at which an instant

failure appears (Ugural 2004; Roesler et al., 2007; Ugural and Fenster 2012).
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3.6.1 Stress Concentration in Brittle Materials

It is well known that the fracture in brittle materials is connected to high local
stresses and strains over a very small area in the immediate vicinity of geometrical
irregularities (defects) such as cracks, sharp corners, fillets, notches and holes (Roylance
2001; Gordon 2003; Meyers and Chawla 2009; Pytel and Kiusalaas 2012; Ugural and
Fenster 2012). These defects, both natural and artificial, may raise the stresses around
their immediate surrounding area to a level much higher that the material capacity even
when the stresses in the parts away from the defects are low and safe (Gordon 2003;
Meyers and Chawla 2009). The condition which produces the high local stresses is called
stress concentration, and it is the primary cause of failure in brittle material (Ugural
2004). Hence, knowing the amount and distribution of these stresses and strains around
the geometrical irregularities in brittle materials is vital for design engineers.

Consider a thin plate contains a notch or a sharp crack, Fig. (3.6a & b), subjected
to tensile stress through the remote ends; ends far away from the notch or the crack. As
shown in the figure, the black lines, lines of forces which represent the in-plane stresses
produced by the uniform tensile stress, are distributed uniformly at the ends of the plate
and clustering near the tip of the notch, or the crack. This leads to concentrating more
force lines in a smaller area near the crack or notch tip which in turns leads to produce
high local stresses; stress.

In fracture mechanics, this high localized stress, stress concentration, is connected
to the nominal stress by a geometric (or theoretical) factor that called stress concentration
factor (Ugural 2004). The stress concentration factor, typically denoted by K, is the ratio

of the maximum stress at the flaw immediate vicinity to the nominal stress (Ugural
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2004). The nominal stress is the stress that would occur in the same material if it was free

from flaws (ideal material), of course under the same loading condition; stress 6.

(®)

BEREE

Figure (3.6) “Lines of force” in a bar with (a) a sharp crack and, (b) a side
notch. (Meyers and Chawla 2009).

Inglis (1913) was the first who provided a formula to describe the stress
concentration due to flaws through analyzing a flat plate containing an elliptical hole (2a
long by 2b wide) subjected to uniform stresses (6) as shown in Figure (3.7) (Anderson
1995). Inglis found that, when the ratio a/b increases (elliptical hole changes to a sharp
crack), the stress at the leading edge of the hole becomes extremely large (Anderson
1995; Meyers and Chawla 2009). Accordingly, the maximum stress occurs at the ends of
the leading edge of the elliptical hole, point A in Figure (3.7), and its value is given in the

following formula.

Omax =04 =0 (1 + 2\/%) ..(3.31)

where p is the radius of curvature of the leading edge of the elliptical hole.
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Figure (3.7) Elliptical hole in a flat plate (Anderson 1995).

5.6.2 The Stress Field near a Crack Tip

From Eqg. (3.31), when the radius of curvature (p) approaches zero (such as in a
sharp crack), the stress at the ends of the leading edge of the crack, crack tips, approaches
infinity. This is called stress singularity, and always exists in isotropic, linearly elastic
materials under condition of plane strain or plane stress (Hutchinson 1983; Roesler et al.,
2007). Basing on this, stress singularity existing near the crack tip which is one of the
basic hypotheses of linear elastic fracture mechanics as well, the general form of stress

singularity can be represented as follow (Hutchinson 1983; Anderson 1995):

K
% = o fij (6) ..(3.32)
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where K is the amplitude of singularity and called stress intensity factor, f; are
dimensionless functions, or 6-variation (Hutchinson 1983), r is polar coordinate and
should be smaller than the crack size, or crack length (Meyers and Chawla 2009). Both K
and fj; are describing the stress distribution around the crack tip, and they depend on the
types of loading which the crack can experience; crack deformations (Hutchinson 1983;
Anderson 1995; Meyers and Chawla 2009). Although the stress singularity in Eq. (3.32)
is for two dimensional elastic materials, the K and f;; are the same for all cracks in two- or
three-dimensional elastic materials (Meyers and Chawla 2009).

In fracture mechanics, three different modes in which a crack in a solid can be
stressed have been distinguished as illustrated in Figure (3.8); Mode I, Mode II, and
Mode 11l (Broek 1986; Anderson 1995; Ugural and Fenster 2012; Meyers and Chawla
2009). The first mode, Mode | (see Figure (3.8a)), has tensile stress normal to the crack
plane tends to open the crack and called opening mode. The Mode Il (see Figure (3.8b))
has in-plane shear stress tends to slide one face of the crack on the other face and called
sliding mode. The third mode, Mode Il (see Figure (3.8c)), has out-of-plane shear tends
to tear the crack, through sliding it transversely, and called tearing mode or transverse
shear mode. A crack can be stressed in any one of these modes (Anderson 1995).
However, a combination of two or three modes can also occur (Anderson 1995; Roesler

etal., 2007).
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(a)

()

Figure (3.8) The three modes of fracture. (a) Mode I: opening mode. (b) Mode II:

sliding mode. (c) Mode IlI: tearing mode (Meyers and Chawla 2009).

The stress components, their derivations are attributed to Westergaard 1939,

corresponding to the crack modes are given below (see Figure (3.9)) (Meyers and Chawla

2009):
MODE I
1
011 K,
022 = *COS—*|1
gii V2nr

013 = 033 =0,

MODE II:
011
K
[022 = 1 *
012 27T7‘

9 307
Sll’l2 Sin >
0 30
SlI'l2 Sin )
0 36
Sll’l2 COoSs 5

..(333)

033 = V(011 + 055 )(plane strain), o33 = 0 (plane stress)

)
SlI'l2
)

SlI'l2

0
cos

(2 0 39) ]
_* —
cos2 cosS >

0 36
cos cos—

6 36
(1—51n—*sm—)

2 2

..(334)

033 = v(0y1 + 05, )(plane strain), o33 = 0 (plane stress)
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MODE IlI:

0

o131 _ K _sz

[023]_ﬁ* COSQ ..(3.35)
2

011 = 0y =033 =013 =0
For anisotropic materials, the above expressions must be modified to permit the
asymmetry of stress at the crack tip (Meyers and Chawla 2009).

The stress intensity factor, K, has a critical value, designated as K., and known as
fracture toughness. The critical (or maximum) stress intensity factor, K., is the force
necessary to extend a crack; when the K reaches K., the existing cracks will start to
propagate and therefore, K., is called fracture toughness (Hutchinson 1983; Ugural and

Fenster 2012).

2a

HERREREREN

Figure (3.9) Infinite, homogeneous, elastic plate containing a through-
the-thickness central crack of length 2a, subjected to a tensile stress o
(Meyers and Chawla 2009).
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3.6.3 Stress Concentration in a Plate containing a Circular Hole
The tangential and radial stresses in a large plate containing a circular hole at the
center and subjected to uniaxial load, Figure (3.10), can be expressed in polar coordinate

as follows (Timoshenko and Goodier 1951):

o a?\ o a* a?
Oy :E 1—7_—2 +E 1+3T_4_4T_2 cos 20 (336)
o a?\ o a*
Opp :E 1+T_2 —E 1+3T_4 cos 26 (337)
o a* a’®
(%) :—E 1_3T_4+21"_2 sin 260 (338)

where ¢ is the uniform stress applied at the ends of the plate, a is the radius of the hole,
and r is the radial coordinate (distance from the center of the hole).

According to the above equations, the maximum tangential stress, a4, OCCUrS at a
point where r =a and ¢ = z/2 (and 6 = 3z/2), point A in Figure (3.3), and equals threefold
of the applied uniaxial stress, . Accordingly the stress concentration factor, K, is equal
to 3; agslc = 3. However, the stress concentration factor, K;, depending on the plate
thickness, plate lateral dimension, D, as well as the ratio of the hole diameter (2a) to the
plate lateral dimension (D) which changes from about zero to close to unity, the stress
concentration factor decreases from 3 to 2.2 (Meyers and Chawla 2009). Note that the

radial and shear stress at any point on the periphery of the hole are equal to zero; o+ = o¥y
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= ( for all points located on the hole’s circumference. Furthermore, at the points where r
=aand # =0 (and 8 = x), north and south poles, an opposite stress to the applied stress at
the ends of the plate will be produced; if the applied stress at the ends of the plate is
compression, the produced stresses at the north and south poles will be tension. Thus

Forr = aandd = 0(and8 = n), o0, =09 =0,and oyg = —0

Omax = 26

ia

Figure (3.10) Stress distribution in a large plate containing a circular hole
(Meyers and Chawla 2009).

3.7 Failure Criteria for Rocks
Rocks are actually quasibrittle materials (Anderson 1995). Under high confining

pressures and temperatures, rocks may exhibit ductile behavior; yielding and deforming
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plastically before failure, while, under normal temperature and pressure, they are
considered as brittle materials, and fracture at or very near to the proportional limit of
elasticity; their plastic deformation, if any, is relatively very small (Jumikis 1983;
Franklin and Dusseault 1989).

Strength of rocks is regarded as the stress needed to cause failure at a given

environmental condition; in another word, it is regarded as the resistance of rocks to
external applied loads, (Jumikis 1983). The most two important types of failure in rocks
are fracture (brittle fracture) and rupture ((Bieniawski et al., 1961)). Fracture is regarded
as a process by which creating new crack surfaces or/and extending the existing cracks
((Bieniawski et al., 1961)). It means a complete loss of cohesion across the surface of
failure which is well connected to the initiation and propagation of cracks caused by
stresses (tensile stresses) (Andreev 1995). Very good definition for the two failure
mechanisms can be found in Bieniawski et al. (1961) as follow:
“.....Fracture is the failure process by which new surfaces in the form of cracks are
formed in a material or existing crack surfaces are extended. Various stages of fracture
may be visualized, namely, fracture initiation, fracture propagation (stable and unstable)
and strength failure. Rupture is the failure process by which a structure (e.g. a rock
specimen) disintegrates into two or more pieces”

Rock failure criterion is an equation, or formula, that used to predict the strength
value of rock under all combination of multiaxial stresses ((Bieniawski et al., 1961;
Jumikis 1983; Franklin and Dusseault 1989; Andreev 1995). This is usually done through

comparing the produced stresses with a critical (strength) value obtained from a simple
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test such as the uniaxial tensile or compressive test; if the stresses reached that critical
value, the failure should be occurred (Bieniawski et al., 1961).

Although earlier attempts to find the failure criteria of rocks, brittle materials in
general, were mainly theoretical and evolved from Griffith’s crack theory (Franklin and
Dusseault 1989), the most used failure criteria in practice are empirical criteria such as
Fairhurst criterion (1964), Hobb's criterion (1970), Franklin's criterion (1971),
Bieniawski criterion (1974), Yudhbir criterion (1983), Johnston criterion (1985), Sheorey
criterion (1989), Yoshida criterion (1990), Ramamurthy criterion (1993), Hoek and
Brown criterion (2002), and Mogi criterion (2007). This is due to the fact that the
theoretical attempts were not fit the experimental data particularly well. The theoretical
criteria are Griffith and Mohr-coulomb criteria (Franklin and Dusseault 1989). However,
the most accepted and widely used theoretical and empirical strength criteria for both
intact rock and rock masses are Mohr-Coulomb criterion and Hoek-Brown criterion

(Franklin 1989: Hoek and Brown 2002).

3.7.1 Griffith criterion (1921).

Basing on the energy instability concept mentioned in his criterion of tensile
failure (1921), Griffith (1924) extended his theory and stated that fracture of brittle,
isotropic, and elastic material, initiated due to presence of micro-cracks and flaws, can
propagate and lead to tensile failure through producing stress concentration around the
tips of the defects even under compressive stress conditions (Norton 1997). Griffith

criterion was originally adopted for purely brittle material, glass, and then later expanded
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to other brittle materials such as rock (Norton 1997; Brady and Brown 2006). It can be
expressed in terms of principle stress as follow
(0, — 03)? = 8T (0, + 03) foro, +305=0 ..(3.39)
o3=T forao; +305<0 ...(3.40)
where T is the uniaxial tensile strength of intact rock.

Griffith theory does not provide a very good model with regarding to the
experimental tests of rocks under multiaxial compression (Brady and Brown 2006).
Therefore, it has been modified by several researchers. One of them is Murrel (1966)
(Brady and Brown 2006). In terms of shear stress, z, and the normal stress, a,, acting on
the plane containing the major axis of the crack, Murrell (1966) modified Griffith
criterion and expressed as follow (Brady and Brown 2006)

72 = 8T (2T + 0,,) ..(3.41)
However, the Murrel’s modification is only valid for the condition in which the uniaxial
compressive strength is eight times the uniaxial tensile strength. Note that, Murrel

equation is the same as Mohr’s envelop equation.

3.7.2 Mohr-Coulomb criterion.

This criterion was based on the assumption that there will be a plane in rock and
soil, called critical plane, on which the material shear strength will be first reached as the
peak stress, o1, is increased, see Figure (3.11a) (Brady and Brown 2006). The critical
plane, f, can found through constructing the Mohr circle as shown in Figure (3.11b).

Accordingly, in principle stress coordinate, assuming that the intermediate stresses has
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not effects on the failure criteria, the Mohr-Coulomb criterion for rocks can be expressed
by the following equation:

_ 2ccos@ +a3(1 +sin®)

= ..(3.42
2 1—sin® ( )
where ¢ = cohesion and @ = angle of internal friction.

o)

™

<

o 28
L] [+ ] G:n

Figure (3.11) Mohr_Coulomb criterion (a) Shear failure on plane ab, (b) Strength
envelope in terms of shear and normal stresses (Brady and Brown 2006).

For a3 = 0, uniaxial compressive strength can be related to c and @ as follows

jaxial jve st th _ 2ccosd 3.43
uniaxial compressive strength, o, = T —sno ..(3.43)

For o1 = 0, uniaxial tensile strength can be related to ¢ and @ as follows
axial tensile strength, o, = —a; = —- %2 3.44
uniaxial tensile strength, oy = —o03 = TTsn0 ...(3.44)
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The determination of a satisfied value of the uniaxial tensile strength of rock, o, is
full of difficulty because the results from Eq. (3.44) are generally higher than the
measured values from the experimental tests (Brady and Brown 2006). Therefore, a
selected value of uniaxial tensile stress, called tensile cutoff and designated by T,, is
usually applied as shown in Figure (3.12). However, for practical purpose, it is better to

put tensile cutoff to zero.

n‘}‘._
[ :

Tll )

Figure (3.12) Coulomb strength envelopes with a tensile cut-off T,
(Brady and Brown 2006).

According to Brady and Brown (2006), the Mohr-Coulomb criterion is not
preferred for intact rock to obtain the peak strength. However, it is very helpful in
obtaining the residual shear strength of materials and the shear strength of discontinuities

in rocks.

3.7.3 Hoek-Brown criterion (2002)

A widely accepted failure criterion, applied in a large number of projects around

the world, was derived by Hoek and Brown (1980) to describe the characterizations for
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both intact rocks and rock masses. It is considered as the most important criterion which
has a high capability of describing both intact rock and rock masses behaviors. The
criterion was first developed for intact rocks and then modified to describe the
characteristics of joints in rock masses (Hoek and Brown 2002). Its generalized form is

expressed as:

4

o.
o, = a3 + g, (m, = +5)a ...(3.45)

Oci

(M)
m, = m; e\28-14D .. (3.46)
(651—100)
s = e\79-3D ..(3.47)
1 1, -6st  -20 348
= — — 15 — 3

a 2+6(e e ) ...(3.48)

where o is unaxial compressive strength of intact rock, m, s, and a are material
constants; m. is a intact rock and s and a are for the rock mass. D is disturbance factor;

disturbances come from blast damage and stress relaxation. The values of D are changes
from zero for undisturbed in situ rock masses to 1 for very disturbed rock masses. And
GSI is the Geological Strength Index which describes both rock mass’s structure and

surface condition (Hoek and Brown 2002).

3.8 Failure Modes of Brittle Materials in General

The mechanical behaviors of brittle materials, such as rock and concrete, are
mainly affected by pressure (confining stress), strain rate, temperature, and pore fluid
pressure (Horri and Nemat-Nasser 1986). However, under a certain temperature (low
temperature) and above a certain strain rate, the confining pressure is the main controlling

factor for dry materials. Regarding failure under compression, solids made of brittle

77

www.manaraa.com



materials fail by a process of progressive microfracture (Sammis and Ashby 1986). Flaws
or stress concentrations within the solids, such as pores, inclusions, and small cracks
(often grain-sized cracks left by its earlier thermal or mechanical history), initiate
individual microcracks. These microcracks within the solids propagate in a direction
approximately parallel to the largest principal compressive stress until they coalesce to
form one of several types of failure modes. Basing on a long list of previous works, Horri
and Nemat-Nasser (1986) identified three main failure modes for brittle materials under
compression with low temperature and rate-independent process (loading) as follows:

1- Axial splitting at zero lateral confining pressure, or uniaxial compression test.
Under uniaxial compression loading, microscopic cracks initiate at the vicinity of
the flaws. Accordingly macrocracks may extend in the direction of axial
compression which in turn leads to the axial splitting.

2- Faulting or macroscopic shear failure at low to moderate confining pressure. For
low to moderate confining pressure, a narrow region of high microcrack density
will be formed. At the axial stress close to the ultimate strength, the region is
finally forming a fault plane.

3- Ductile flow or cataclastic flow at large confining pressure. For this failure mode,
the formation of the narrow region of high microcrack density is suppressed by
the high confining pressure. Accordingly, depending on the material (types of
rocks) and the temperature and pressure level, either ductile flow or cataclastic
flow will be formed. The ductile flow is produced by plastic deformation
throughout the sample, while the cataclastic flow is characterized by distributed

microcracking.
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Since the compressive strength of brittle materials increases with confining pressure
increasing, the uniaxial compressive strength can be taken as a good measure of
minimum strength of brittle materials under compression. Accordingly the failure modes
of brittle material under uniaxial compression can be helpful in designing engineering

structures safely and economically (Maji 2011).

3.9 Failure Modes of Brittle Porous Solids under Compression Stress

For porous solids made of brittle materials, when they are loaded in compression,
the individual microcracks initiate at the pore peripheries. These microcracks propagate
and coalesce to form a failure mode depending on the confining stress. Sammis and
Ashby (1986) identified three main types of failure modes under compression for brittle
porous solids as shown in Figure (3.13):

1- Axial splitting or vertical slabbing: Under uniaxial compression loading,
microcracks initiate, propagate and finally coalesce to form contiguous
vertical failure planes as shown in Figure (3.13a).

2- At low to intermediate confining pressures, failure appears as a shear fault, or
as a shear band as shown in Figure (3.13b). The inclination of the shear band
changes with the confining pressure. It is often following a simple Coulomb
failure criterion.

3- At high confining pressures, the sample deforms in a pseudo-ductile mode;
many, short, homogenously distributed, microfractures will be formed at

large-scale deformation as shown in Figure (3.13c).
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Figure (3.13) Failure Modes and Stress- Strain Curves for Porous Solids (Sammis
and Ashby 1986)

From the stress- strain curves, for porous solids with zero confining pressure, the axial-
stress-axial-strain curve will be composed of a peak stress followed by a very sharp
descending portion. They show a zero hardening beyond the peak stress, see the stress-
strain curve shown in Figure (3.13e). The hardening beyond the peak stress increases
with increasing confining pressure as shown in Figures (3.13f & g). Eventually, at high
confining pressure, the portion of the axial-stress-axial-strain curve, after peak stress,
starts to ascend and transits gradually from brittle to ductile stress-strain curve; see the
stress-strain curve in Figure (3.13g). At this stage several short, homogenously
distributed, microfractures will be formed throughout the sample.

In addition, according to Hudyma et al. (2004) and Jespersen et al. (2010), for
porous solids under uniaxail compression, the failure modes are mainly depending on
void porosity and bridge distances. Accordingly, they identified three main failure

modes; axial splitting (or tensile failure), shear failure, and web failure. For void porosity
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< 10%, and for bridge distances from 0.5 to 1.5 void diameters, the dominant failure
mode was axial splitting (vertical to sub-vertical tension fractures oriented approximately
parallel to the applied axial load), see Figures (2.38) and (2.39a) in Chapter Two. For
void porosity range 10 — 20%, and for bridge distance of 1.5 void diameters, the
dominant failure mode was shear failure as shown in Figures (2.38) and (2.39b). Finally,
according to Hudyma et al. (2004), the dominant failure mode was web failure for void
porosity > 20%, see Figure (2.38). However, at bridge distances greater than 1.5 void

diameters, the dominant failure mode returns to tensile failure as shown in Figure (2.39c).
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CHAPER FOUR ANALYSIS OF THE EXPERIMENTAL RESULTS

4.1 Introduction

In this chapter, the data from the work of Project Activity Task ORD-FY04-013,
conducted under Cooperative Agreement No. DEFC28-04RW12232 between the U.S.
Department of Energy and the Nevada System of Higher Education (NSHE), are
analyzed to explore the effects of void geometry, besides porosity, on the mechanical
properties of rock-like material (analog material). The main purpose of the work of
Project Activity Task ORD-FY04-013 was to study the effects of void porosity and void
geometry on the mechanical behavior of lithophysal-rich tuff from the Topopah Spring
formation at Yucca Mountain using rock-like material (analog material).

Since until nowadays, the effects of void size, void shape, void orientation, and
void spatial distributions on the mechanical properties of rock-like materials have not
been addressed in the correlations between the mechanical behaviors of rock-like
materials (UCS and E) and void porosity, this chapter aims to find a hypothesis, or
hypotheses, that can consider the effects of those factors using the data obtained from the
experimental tests carried out in the work mentioned above. In addition, the influences of
void existence on failure modes of Hydro-StoneTB® cubes are explored to obtain a better
insight into the influences of void existences on the crack patterns and failure modes for

rocks and rock-like materials.
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4.2 Material and Specimens

Due to the reasons mentioned in Chapter One, it is impracticable to obtain actual
specimens to quantify the mechanical behaviors of the Topopah Spring formation at
Yucca Mountain under uniaxial compression. Therefore, Hydro-StoneTB®, instead, was
used as the rock-like material in the Project Activity Task ORD-FY04-013. To achieve
the goals of the Project Activity Task ORD-FY04-013, the Hydro-StoneTB® was cast
into 152.4x152.4x152.4 mm cubes to produce porous and solid specimens. Fifty two
porous specimens were made. Each porous specimen, porous cube, was produced in
triplicate. Ten solid cubes were also cast to represent rock-like material with zero void
porosity. The total number of experiments, including the ten solid cubes, was one
hundred sixty six, 166, cubes.

Due to its easy reproductive ability, cubical shape was selected for the
experimental specimens in the Project Activity Task ORD-FY04-013. Furthermore, to
compare the experimental results with those of two-dimensional plane strain numerical
models, open ended longitudinal openings were used to represent the voids in the porous
cubes. However, cubes with longitudinal openings cannot be considered as an exact
two-dimensional plane strain models; they lie somewhere between plane strain (infinite
length holes) and plane stress (thin plate) assumptions (Rigby 2007). To obtain porous
cubes with different void geometries, cubes with open ended longitudinal openings
having different cross sectional shape (circular, square, and diamond), different sizes
(unisize large, medium, and small), and different void distributions (patterns A, B, and C)
were made and tested under uniaxial compression. Tables (4.1) to (4.3) show void

porosities and characterizations of void geometry for the porous cubes.
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The diameters of the unisize circular openings were 31.14 mm (large), 22.1 mm
(medium), and 12.78 mm (small) as shown in Table (4.1). For the samples with mixed
voids, the three diameters (large, medium, and small) were mixed in each specimen, see
Table (4.2). For the samples with non-circular voids, square and diamond voids, the side
lengths of both square and diamond openings were 15.6 mm (small voids) and 22 mm
(large void) as shown in Table (4.3). The three void patterns (A, B, and C) were
generated depending on the location of the first void. Putting the origin of x-y axis at the
center of the cubes, the locations of the first void for the patterns A, B, and C were
selected to be at (0, 0), (-38.1, -38.1), and (-53.98, -53.98) respectively as shown in
Figure (4.1). The locations of the remained voids in each cube were randomly generated
by Itasca Consulting Group, Inc. personnel, in 2004, basing on the following two
conditions (1) Void overlapping should not be allowed and (2) The number of voids

should not exceed thirty three voids.
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Table (4.1) Porous and Solid Cubes - Specimens with Unisize Circular Voids

Description of Voids Number | Void Porosity | Sample Nga:?nb&:zsc,)f
Void Size of Voids (n), % Pattern Tested

A 3
31.14 mm 2 6.56 B 3
C 3
A 3
Large (L) |31.14 mm 4 13.12 B 3
C 3
A 3
31.14 mm 6 19.68 B 3
§ C 3
g A 3
L 22.1 mm 4 6.61 B 3
= C 3
o A 3
O [Medium (M)| 22.1 mm 8 13.21 B 3
g C 3
Zg’ A 3
-) 22.1 mm 12 19.82 B 3
C 3
A 3
12.78 mm 11 6.07 B 3
C 3
A 3
Small (S) |12.78 mm 22 12.14 B 3
C 3
A 3
12.78 mm 33 18.22 B 3
C 3
Total Number of Cubes 81
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Table (4.2) Porous and Solid Cubes - Specimens with Mixed Circular VVoids

Description of | Size of Voids, | Number VO.'d Sample Number of
. - Porosity, n, Cubes
\Voids mm of Voids Pattern
% Tested
A 3
12.78 - 31.14
5 6.59 B 3
(1L, 1M, 3S) C 3
Mixed Circular | 12.8 -31.14 A 3
Voids (2L, 3M, 6S) 1 14.83 B 3
C 3
A 3
12.78 - 31.14
15 19.24 B 3
(2L, 5M, 8S) C 3
Total Number of Cubes 27
Table (4.3) Specimens with Square and Diamond Voids
Description of | Side Length of| Number | Void Porosity, | Sample Nu(;r;l:t))zrs of
Voids Voids, mm of Voids n, % Pattern
Tested
) 22.05 3 6.28 A 3
Large Diamond B 3
\Voids (L A 3
L) 22.05 6 12.56
B 3
A 3
. 15.65 6 6.32
Small Diamond B 3
\oids (S
®) 15.65 12 12.65 A 3
B 3
22.05 3 6.28 A 3
Large Square B 3
\oids (L
L) 22.05 6 12.56 A 3
B 3
15.65 6 6.32 A 3
Small Square B 3
\oids (S
®) 15.65 12 12.65 A 3
B 3
Total Number of Cubes 48
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Figure (4.1) Location of First VVoid; Patterns A, B, and C for Circular Voids, and
Patterns A and B for Non-circular VVoids

4.3 Laboratory Experiments
The cubical specimens, both solid and porous cubes, were tested in a large Instron
600RD load frame, hydraulically driven, with a load capacity of 3000 kN (600 kips) and

the strain rate of about 3 x 10 at the Nevada Department of Transportation (NDOT)
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materials lab facility in Las VVegas. The Instron load cell force measurement accuracy is +
0.2 % of its full-scale output. The axial and lateral displacement transducers (LVDTS)
were Daytronic £ 0.1 inches full-scale LVDTs and each had accuracy within £ 0.5%. The
uniaxial compressive strength (UCS) and Young’s Modulus (E) were calculated for each
specimen from the stress-strain curve of uniaxial compression test as follows:

1- The peak load divided by the original cube surface area (152.4x152.4 mm)

was taken as the ultimate strength; the uniaxial compressive strength:

Peak Load
Area of the Cube

Uniaxial Compressive Strength (UCS) = (41

2- The modulus of elasticity of the cubes, Secant Young’s Modulus, was found
from the stress-strain curve plotted for each specimen by taking the ratio of
the difference between 50% of the uniaxial compressive strength and 25% of
the uniaxial compressive strength to the difference of their corresponding

strains as shown in the following equation:

, 50% of UCS — 25% of UCS
Young's Modulus (E) = - - . (4.2)
Strainsgy, of ycs — StraiNzsy, of ucs

4.4 Analysis of Experimental Results
In order to obtain high-quality data analysis, the data should be cleansed
searching for anomalies (incomplete, or incorrect, data) and checking the data precision

(accuracy). Searching for anomalies was done through comparing the existing data to the
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data in the original documents which were kept in Soil Mechanics Laboratory at UNLV.
Regarding the data accuracy, British Standards (BS 1881: 1983) was used to check the
precision data. According to the British Standards (BS 1881: Part 116: 1983), the
precision data for measurements of the compressive strength of hardened concrete can be
expressed as percentage of the mean of the cube strengths whose differences are not
higher that 9%. Since the specimens in Project Activity Task ORD-FY04-013 were tested
in triplicate, any cube strength value differs from the mean value by more than 9% is not
considered in this analysis. The average values of the experimental results are shown in
Tables (4.4) to (4.6). All laboratory test results and the photographs of all tested cubes are
shown in Appendix (I). The codes used to name the specimens are in according with their
void pattern name, void type, void size, and number of voids as follows:

1- PA, PB, and PC are patterns A, B, and C respectively (Figure 4.1).

2- U = Unisize (all voids have the same size), UX = Mixed (different size voids).

3- C =Circular, Sq = Square, and Dm = Diamond.

4- L =Large, M = Medium, and S = Small.

5- The numbers affixed to the end (2, 3, 4, 6, 8, 11, 12, 22, and 33) indicate the

number of voids. and
6- The letters affixed to the end of the specimen name (A, B, and C) indicate the
number of specimen in the three specimens of the same sample pattern.

The experimental test results in the Project Activity Task ORD-FY04-013 are
used to explore the effects of voids on uniaxial compressive strength, elastic modulus,
and failure modes of rock-like material. The normalized values are used to generalize the

results. The normalization is accomplished by dividing the values of the porous cube’s
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mechanical properties by the average value of the solid specimen’s mechanical

properties. Tables (4.7) to (4.9) show the normalized results of the experimental results.

Table (4.4) Experimental Results for Cubes Containing Unisize Circular Voids

Porosity (n) Uniaxial Compressive | Young’s Modulus,
Sample Name Strength, UCS E (25-50%)

% MPa GPa
PA-UCL2-A&B 6.56 19.31 9.36
PA-UCL2-C 6.56 16.62 8.65
PB-UCL2 6.56 17.31 11.74
PC-UCL2 6.56 24.61 9.86
PA-UCLA4-A 13.12 18.20 0.66
PA-UCL4-B 13.12 14.27 8.56
PA-UCL4-C 13.12 13.51 8.55
PB-UCL4 13.12 11.55 8.68
PC-UCL4 13.12 16.27 11.27
PA-UCL6 19.68 9.84 6.69
PB-UCL6 19.68 9.63 7.47
PC-UCL6 19.68 9.65 7.54
PA-UCM4 6.61 22.57 12.08
PB-UCMA4 6.61 21.48 10.91
PC-UCM4 6.61 24.55 13.42
PA-UCMS 13.21 18.66 7.92
PB-UCMS8 13.21 17.34 10.07
PC-UCMS8 13.21 13.24 11.85
PA-UCM12 19.82 12.53 8.61
PB-UCM12 19.82 9.41 9.03
PC-UCM12 19.82 5.55 7.57
PA-UCS11 6.07 26.27 11.58
PB-UCS11 6.07 26.74 10.67
PC-UCS11 6.07 21.65 11.38
PA-UCS22 12.14 15.72 9.49
PB-UCS22 12.14 17.56 8.72
PC-UCS22 12.14 16.75 12.09
PA-UCS33 18.22 11.35 8.19
PB-UCS33 18.22 13.27 9.19
PC-UCS33 18.22 10.09 7.44
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Table (4.5) Experimental Results for Cubes Containing Mixed Circular VVoids

Porosity | Uniaxial Compressive | Young’s Modulus,
Sample Name (n) Strength, UCS E (25-50%0)

% MPa GPa
PA-UXCL1M1S3 6.59 23.44 11.08
PB-UXCL1M1S3 6.59 23.96 10.85
PC-UXCL1M1S3 6.59 21.19 9.88
PA-UXCL2M3S6 14.83 13.93 7.99
PB-UXCL2M3S6 14.83 13.79 8.18
PC-UXCL2M3S6 14.83 14.69 9.47
PA-UXCL2M5S8 19.24 11.79 7.10
PB-UXCL2M5S8 19.24 10.43 8.30
PC-UXCL2M5S8 19.24 8.20 7.24

Table (4.6) Experimental Results for Cubes Containing Square or Diamond

Voids
Porosity | Uniaxial Compressive | Young’s Modulus,
Sample Name (n) Strength, UCS E (25-50%0)

% MPa GPa
PA-USqL3 6.28 20.98 10.19
PB-USqL3 6.28 28.27 11.34
PA-USqL6 12.56 16.2 10.98
PB-USqL6 12.56 20.02 8.18
PA-USqM6 6.32 26.20 11.11
PB-USqM6 6.32 26.52 10.36
PA-USqM12 12.65 17.37 10.56
PB-USqgM12 12.65 16.18 7.73
PA-UDmML3 6.28 16.06 10.32
PB-UDmML3 6.28 22.80 11.50
PA-UDmMLG6 12.56 11.88 8.95
PB-UDmML6 12.56 10.55 10.02
PA-UDmMM®6 6.32 19.21 11.71
PB-UDmMM®6 6.32 22.58 11.22
PA-UDmMmM12 12.65 11.01 9.26
PB-UDmM12 12.65 16.93 10.72
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Table (4.7) Normalized Results for Cubes Containing Unisize Circular VVoids

Porosity . Normalized E
Sample Name (n) Normalized UCS (25-506)
%
PA-UCL2-A&B 6.56 0.351 0.585
PA-UCL2-C 6.56 0.302 0.541
PB-UCL2 6.56 0.315 0.734
PC-UCL2 6.56 0.447 0.616
PA-UCL4-A 13.12 0.331 0.604
PA-UCL4-B 13.12 0.259 0.535
PA-UCL4-C 13.12 0.246 0.534
PB-UCL4 13.12 0.210 0.543
PC-UCL4 13.12 0.296 0.704
PA-UCL6 19.68 0.179 0.418
PB-UCL6 19.68 0.175 0.467
PC-UCL6 19.68 0.175 0.471
PA-UCM4 6.61 0.410 0.755
PB-UCM4 6.61 0.391 0.682
PC-UCM4 6.61 0.446 0.839
PA-UCMS8 13.21 0.339 0.495
PB-UCM8 13.21 0.315 0.629
PC-UCM8 13.21 0.241 0.741
PA-UCM12 19.82 0.228 0.538
PB-UCM12 19.82 0.171 0.564
PC-UCM12 19.82 0.101 0.473
PA-UCS11 6.07 0.478 0.724
PB-UCS11 6.07 0.486 0.667
PC-UCS11 6.07 0.394 0.711
PA-UCS22 12.14 0.286 0.593
PB-UCS22 12.14 0.319 0.545
PC-UCS22 12.14 0.305 0.756
PA-UCS33 18.22 0.206 0.512
PB-UCS33 18.22 0.241 0.574
PC-UCS33 18.22 0.183 0.465
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Table (4.8) Normalized Results for Cubes Containing Mixed Circular Voids

Porosity . Normalized E
Sample Name (n) Normalized UCS (25-50%%)
%
PA-UXCL1M1S3 6.59 0.426 0.693
B-UXCL1M1S3 6.59 0.436 0.678
PC-UXCL1M1S3 6.59 0.385 0.618
PA-UXCL2M3S6 14.83 0.253 0.499
PB-UXCL2M3S6 14.83 0.251 0.511
PC-UXCL2M3S6 14.83 0.267 0.592
PA-UXCL2M5S8 19.24 0.214 0.444
PB-UXCL2M5S8 19.24 0.190 0.519
PC-UXCL2M5S8 19.24 0.149 0.453

Table (4.9) Normalized Results for Cubes Containing Square or Diamond Voids

Porosity Normalized Normalized
Sample Name (02 Experimental UCS EX?;;‘_@S&: ;’l |E
PA-USqL3 6.28 0.381 0.637
PB-USqL3 6.28 0.514 0.709
PA-USqL6 12.56 0.294 0.686
PB-USqL6 12.56 0.364 0.511
PA-USqM6 6.32 0.476 0.694
PB-USqQM6 6.32 0.482 0.648
PA-USqM12 12.65 0.316 0.660
PB-USqM12 12.65 0.294 0.483
PA-UDmML3 6.28 0.292 0.645
PB-UDmML3 6.28 0.414 0.719
PA-UDmMLG6 12.56 0.216 0.559
PB-UDmMLG6 12.56 0.192 0.626
PA-UDmMM6 6.32 0.349 0.732
PB-UDmMM®6 6.32 0.410 0.701
PA-UDmMM12 12.65 0.200 0.579
PB-UDMmM12 12.65 0.308 0.670
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4.4.1 Effects of Void Porosity
The results of uniaxial compressive strength and Young’s modulus for
experimental results are plotted as a function of void porosity in Figures (4.2) and (4.3).
According to the results, for the void porosity ranging between 6.28% and 19.82%,
regardless of the void size, void distribution, and void uniformity, the normalized
experimental results showed increases in both normalized UCS and E with decreasing
porosity. However, the coefficient of determination for uniaxial compressive strength (R?
= 0.729) is higher than that for the Young’s modulus (R® = 0.5364). The results showed
power trend with increasing porosity for both uniaxial compressive strength and Young’s
Modulus. The relationships can be represented best by the following equations:
Normalized UCS = 0.0631 = ((porosity)~1)06849  R2 =(.729 .. (4.3)
Normalized E = 0.324 = ((porosity)~1)02753 R? = 0.5364 . (44)
From Figures (4.2) and (4.3) and Tables (4.4) to (4.6), for similar void porosity,
the results showed different values for both UCS and E. However, the differences for
UCS are smaller than those for E. For similar void porosities, 6.5%, 12.6%, and 19.6%,
some cubes had very low uniaxial strength (16.06 MPa, 10.55 MPa, and 5.55 MPa for
void porosities of 6.5%, 12.6% and 19.6% respectively), while the others had very high
uniaxial strength (28.27 MPa, 20.02 MPa, and 12.53 MPa for void porosities of 6.5%,
12.6% and 19.6% respectively). Accordingly, the percentages of the maximum
differences in UCS values were 76%, 89.6%, and 126% for void porosities 6.5%, 12.6%
and 19.6% respectively. There are also several cubes that their strength values are located

between the lowest and the highest strengths.
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Similarly, some cubes gave smaller Young’s Modulus (8.65 GPa, 7.73 GPa, and
6.69 GPa for void porosities of 6.5%, 12.6% and 19.6% respectively) compared to some
other cubes which gave larger Young’s Modulus (13.42 GPa, 10.56 GPa, and 8.61 GPa
for void porosities of 6.5%, 12.6% and 19.6% respectively). Accordingly, the percentages
of the maximum differences in E values were 55.6%, 36.6%, and 28.6% for void
porosities 6.5%, 12.6% and 19.6% respectively. Of course, there are also several cubes
that their Young’s Modulus values are located between the lowest and the highest values.
These differences can be partly attributed to the experimental uncertainties, while, the
other part of the differences might be due to the effects of void geometry. In the next
sections, the contributions of void geometry in the differences in both UCS and E are

explored.
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Figure (4.2) Normalized Uniaxial Strength versus Void Porosity for Cubes with VVoids
Having Different Size, Shape and Distribution
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4.4.2 Void Geometry Characterizations

Different Size, Shape and Distribution

Void geometry comprises void size, void shape, void orientation, and void

geometrical distributions. The void geometrical distributions, spatial distributions of

voids, mean spatial frequency of void occurrence in a porous medium. They are typically

controlled by void positions with respect to the boundaries (edges of the specimens).

The experimental results from the work in Project Activity Task ORD-FY04-013

are used to check the effects of void geometry on the mechanical properties the rock-like

material.
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4.4.2.1 Effects of Void Size

The results of uniaxial compressive strength and Young’s modulus for cubes
containing unisize circular voids are plotted as a function of void porosity in Figures (4.4)
to (4.9). The three different sizes of circular voids (large size - 31.14 mm, medium size —
22.1 mm, and small size - 12.78 mm) showed similar changes in values of both
normalized UCS and E with void porosity changing as shown in Figures (4.4) and (4.5).
Figures (4.6) to (4.9) show the experimental results for cubes containing unisize square
voids or unisize diamond voids. Similarly, the two different sizes of voids (large size -
22.05x22.05 mm, and small size - 15.65x15.65 mm) gave similar changes in both
normalized UCS and E with void porosity changing. Accordingly, the different void sizes
studied in this experimental program did not show discernible effects on the mechanical

properties of the Hydro-Stone TB®.
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Figure (4.4) Normalized Uniaxial Compression versus Void Porosity for Cubes
Containing Unisize Circular Voids
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4.4.2.2 Effects of Void Shape

Both circular and no-circular voids (square and diamond voids) were created in
the cubic specimens tested in Project Activity Task ORD-FY04-013. Since, for the same
void porosity, the size and distribution of circular voids were different from those of non-
circular voids, the results are not comparable to find the effect of void shapes on the
mechanical properties of the rock-like material. Regarding the models containing non-
circular voids (square and diamond voids), although the size and distribution of the voids
are alike for the same void porosity, the diamond voids are just the square voids rotated
by 45 degree (they are square voids with different orientation). Therefore, the two non-
circular voids cannot be considered as voids with two different shapes. However, the

results of cubes containing non-circular voids can be used to explore the effects of void
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orientation on the mechanical properties of the rock like material. Accordingly, the
results of uniaxial compressive strength and Young’s modulus for cubes containing either
unisize square or unisize diamond voids are plotted as a function of void porosity in
Figures (4.10) and (4.11). According to the results, the following observations can be
discussed:

1- The experimental results showed increases in both UCS and E of Hydro-
StoneTB® cubes with decreasing void porosity following power trends.

2- From Figures (4.10), regardless of the void size (large and small size voids), and
void distribution (patterns A and B), the cubes containing square voids showed
slightly higher UCS compared to the cubes containing diamond voids (square
voids rotated by 45 degree). On average, the cubes containing square voids gave
higher strength by 9% compared to the cubes containing square voids rotated by
45 degree; the differences ranging between -1.36% to 17.2%.

3- From Figure (4.11), the results for models having similar porosity showed similar
changes in E regardless of the void size (large and small size voids), void
distribution (patterns A and B) and void orientations.

Accordingly, rotating square voids by 45 degree led to a reduction in the uniaxail
compressive strength by 9% on average. This might due to larger void width for
diamond shapes compared to square voids; the void dimension perpendicular to the
maximum compression stress is larger for diamond square which in turn may lead to
lesser strength. However, the effect of void orientation on Young’s modulus was

insignificant.
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4.4.2.3 Effects of Void Spatial Distributions

For cubic porous specimens containing open-ended longitudinal openings, the
spatial distributions of voids are specified by choosing the distances between the voids
and the cube edges (edge distances). The edge distance is usually composed of two parts;
side distance (shortest distance between the void periphery and the vertical sides of the
cube) and top (or bottom) distance (shortest distance between the void periphery and
either top or bottom edge of the cube). For the same porosity, different spatial
distributions of voids can be obtained by different combination of side distances and top
distances. This can lead to porous cubes having the same void porosity, number of voids,
and void sizes but different bridge distances. The bridge distance is the shortest distance
between two adjacent voids. Therefore, the void spatial distribution can be defined as the
combination of side distances, top distances and bridge distance. Figure (4.12) shows an
example on how to measure the side distances, top distances and bridge distances for
voids within porous cubes.

The experimental results from the work in Project Activity Task ORD-FY04-013
showed different values for both UCS and E at almost the same void porosity; see Figures
(4.2) and (4.3). These differences can be partly due to the effects of void geometry. Since
the different void sizes and void shapes did not show distinct effects on the mechanical
properties of Hydro-StoneTB®, see Figures (4.4) to (4.11), the remained factor in the void
geometry characterizations is the void spatial distribution. In addition, although the
results were are not very conclusive, Jespersen et al. (2010) found that the mechanical

properties of rock-like material changes with bridge distances changing. One reason of
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obtaining inconclusive results by Jespersen et al. (2010) might be due to not considering

the effects of side distances and top distances when the bridge distances changed.
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Figure (4.12) Bridge distances, By, Side distances, S, and Top distances, T, for
Hydro-StoneTB® cubes

Accordingly, it can be assumed that the mechanical properties of rock-like material

containing voids is a function of void porosity, n, (or void size, D, and the number of
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voids) and bridge distance, b, (or side distance, s, and top distances, t). This can be
written mathematically as follows:
Normalized Uniaxial Conpressive Strength = f(n™%, b, s, t) .. (4.5)
Normalized Young’s Modulus = f(n™%,b,,s,t) .. (4.6)
The experimental results from the work in Project Activity Task ORD-FY04-013 are

used to check the validation of the above mathematic expressions; Egs. (4.5) and (4.6).

4.4.2.4 Effects of Bridge, Side and Top distances

The sketches of the cubes tested in Project Activity Task ORD-FY04-013 were
redrawn in AutoCAD program, and from them the void bridge distances, by, side
distances, s, and top distances, t, for each cube were measured. Tables (4.10) to (4.12)
show the measured distances for all specimens. However, the bridge distances larger than
the void diameter, D, (or side length for the square voids or diagonal length for the
diamond voids - see Figure (4.12) were not considered. According to Timoshenko and
Goodier (1951), when a large plate containing a circular hole at the center is subjected to
uniaxial compression stress, the maximum compression stress produced on the periphery
of the hole and equals to threefold of the applied uniaxial stress reduces to the normal
value of the applied compression stress (1.074 of the applied uniaxial compression stress)
at a distance equals to one hole’s diameter. Accordingly, based on Timoshenko and
Goodier (1951), the bridge distances larger than the D were disregarded. Finally, the
average values of bridge distances, By, side distances, S, and top distances, T, for each

cube were obtained as shown in Figure (4.12).
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The results of uniaxial compressive strength and Young’s modulus for
experimental results are plotted as a function of the distances (bridge, side and top) as
shown in Figures (4.13) to (4.18). The normalized values of the distances were also used
to generalize the results. The normalized bridge distances were obtained by dividing
average values of bridge distances between every two adjacent voids by the void
diameter for circular voids, or side length for the square voids, or diagonal length for the
diamond voids. Regarding both top and side distances, the normalized distances were
obtained by dividing the average value of the shortest top (or the shortest side) distances
by the half of the specimen size (152.4/2 = 76.2 mm). Since the specimens were tested by
loading them from both sides (top and bottom), the effective specimen size should be
measured from the middle of the specimen to the top, or the bottom. Therefore, the
effective size of the specimens is the actual size of the specimens divided by two; 152.4/2
= 76.2 mm. Similarly, for the side distances, the effective specimen size should be
measured from a vertical line passes through the middle of the specimens. Accordingly,
the maximum top and side distances should be less than or equal to half of the actual
specimen size minus the void diameter (or side length for the square voids or diagonal
length for the diamond voids) as shown in Figure (4.12).

From the results, as can be seen in Figures (4.13) to (4.18), the normalized
average values of bridge, side, and top distances show weak correlations with the
mechanical properties of Hydro-StoneTB® cubes. From Figures (4.13) to (4.16), both
bridge distances and side distances showed poor correlations with the mechanical
properties; for the bridge distances the values of R* are 0.42 and 0.1636 for UCS and E

respectively; while for the side distances the values of R? are 0.2794 and 0.1 for UCS and
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E respectively. The top distances did not show any correlation with the mechanical

properties of the Hydro-StoneTB® cubes; the values of R? are zero, see Figures (4.17)

and (4.18). The correlations for all of them followed linear trend.

Table (4.10) Bridge, Side distances, and Top Distances of Unisize Circular VVoids

Average Bridge Average Top Average Side
Sample Name Distances (By) Distances (T) Distances (S)

mm mm Mm
PA-UCL2-A&B 31.14 30.31 37.08
PA-UCL2-C 31.14 30.32 37.09
PB-UCL2 9.42 28.33 41.38
PC-UCL2 31.14 12.45 33.03
PA-UCL4-A 12.18 30.63 38.33
PA-UCL4-B 12.18 38.33 30.63
PA-UCL4-C 12.18 38.33 30.63
PB-UCL4 8.69 34.75 31.38
PC-UCL4 16.72 17.93 31.70
PA-UCL6 17.81 22.55 29.71
PB-UCL6 12.63 31.33 33.03
PC-UCL6 13.18 31.48 25.61
PA-UCM4 18.22 42.85 35.15
PB-UCM4 17.79 39.27 35.90
PC-UCM4 20.50 24.12 35.53
PA-UCMS8 16.77 39.76 37.71
PB-UCM8 16.55 35.78 36.53
PC-UCM8 11.09 31.82 34.38
PA-UCM12 13.50 31.70 32.82
PB-UCM12 12.28 36.06 31.02
PC-UCM12 9.55 34.69 28.53
PA-UCS11 12.78 38.43 39.29
PB-UCS11 12.78 41.10 37.70
PC-UCS11 12.78 36.79 35.68
PA-UCS22 9.08 38.89 38.66
PB-UCS22 8.23 29.65 37.29
PC-UCS22 8.81 37.63 37.68
PA-UCS33 8.49 34.70 34.51
PB-UCS33 9.01 35.30 36.49
PC-UCS33 8.79 36.03 36.13
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Table (4.11) Bridge, Side distances, and Top Distances of Mixed Circular VVoids

Average Bridge Average Top Average Side

Sample Name Distances (By) Distances (T) Distances (S)
mm mm Mm
PA-UXCL1M1S3 21.36 71.82 32.59
PB-UXCL1M1S3 17.79 74.84 37.86
PC-UXCL1M1S3 28.02 67.00 35.25
PA-UXCL2M3S6 18.07 62.41 35.49
PB-UXCL2M3S6 18.91 69.38 38.16
PC-UXCL2M3S6 18.91 63.23 34.27
PA-UXCL2M5S8 16.63 52.65 34.80
PB-UXCL2M5S8 15.90 70.61 37.48
PC-UXCL2M5S8 16.27 69.67 38.23

Table (4.12) Bridge, Side distances, and Top Distances of Unisize Non-Circular Voids —

Square and Diamond Voids

Average Bridge Average Top Average Side

Sample Name Distances (By) Distances (T) Distances (S)
mm mm Mm
PA-USgL3 22.05 35.29 44.70
PB-USqL3 22.05 26.31 39.51
PA-USQL6 20.55 39.91 34.27
PB-USqL6 22.05 35.88 37.58
PA-USgM6 16.01 43.11 37.47
PB-USqM6 17.22 39.08 40.78
PA-USgM12 10.58 34.93 36.05
PB-USqM12 13.02 39.28 34.25
PA-UDmML3 21.24 39.75 30.73
PB-UDmML3 19.67 21.75 34.94
PA-UDmML6 20.95 35.35 29.70
PB-UDmML6 31.18 31.31 33.41
PA-UDMM6 21.37 39.88 34.23
PB-UDmMM®6 16.46 35.84 37.53
PA-UDmMM12 15.49 32.81 32.20
PB-UDmMM12 15.56 31.01 36.04
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4.4.5 Alternative Methods to Explore the Effects of Void Geometry

According to Sammis and Ashby (1986), the brittle porous solids under uniaxial
compression fail due to microcracks initiated at the void peripheries and propagated and
finally coalesced to form contiguous vertical failure planes ( see Figure (3.13)). In
addition, according to Timoshenko and Goodier (1951), when a large plate containing a
circular hole at the center is subjected to uniaxial compression stress, the maximum
compression stress occurs at a point on the periphery of the hole and equals threefold of
the applied uniaxial stress. At a distance equals to one hole’s diameter from the hole
periphery, the maximum compression stress reduces to the normal value (1.074 of the
applied uniaxial stress); from Eq. (3.37) in Chapter Three. Accordingly, it can be
concluded that when a porous specimen is subjected to uniaxial stress, the produced
stresses within the sample are concentrated at the immediate vicinities of the voids in the
porous specimens. Therefore, those zones next to the voids are critical parts in the porous
materials. Basing on the aforementioned paragraphs, the porous cubes can be assumed to
be composed of two types of vertical columns; porous columns those solid parts of the
cubes containing voids and solid columns immediately next to the porous columns as
shown in Figure (4.19). Furthermore, it can be assumed that the total strength of the
porous comes from the summation of the strength of the individual columns.

Since the vertical columns in the porous cubes are two types, porous columns and
solid columns as shown in Figure (4.19), shaded part and colored part, the ultimate
strength of the porous specimens should come largely from the solid columns. Basing on
the assumption, the porous specimens having larger solid parts (W =w; + wo + w3 + ....)

should give higher ultimate strength. In other words, for the same void porosity of a
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porous specimen, the void geometry that gives larger solid parts, wider solid columns,

should give higher ultimate strength compared to that gives smaller solid parts.

W=w] +w?+w3

W=wl +w2+w3 +wd

ef! ."H‘—

W=wl +w2+w3
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Accordingly, the Egs. (4.5) and (4.6) can be rewritten mathematically as follows:
Normalized Uniaxial Conpressive Strength = f(n™1, W) .. (4.7)
Normalized Young’s Modulus = f(n™1, W) .. (4.8)

The above expressions can be rewritten as follows:

(UCS)Porous w

UCS)sona <n ) (49
(E)Porous w

s i) -0

Where
(UCS)porous = Uniaxial compressive strength of porous cubes,
(UCS)soilg = uniaxial compressive strength of solid cubes,
(E)porous = Young’s modulus of porous cubes,
(E)soitld = Young’s modulus of solid cubes..
n = void porosity, and
W = total width of solid columns

One problem in the above expressions is that for the porous specimens having
zero W, the strength and Young’s modulus reduce to zero which is physically incorrect.
This can be solved by normalizing the total width of solid columns (W) through replacing
it by [(W+ (0.01*D)/ (0.01*D)]. The D is void diameter for circular voids, side length for
square voids, and diagonal length for the diamond voids, see Figure (4.19). Accordingly,

the above expression can be rewritten as follows:

W+ 0.01D
(UCS)porous (W) (4.11)
(UCS)sotia n
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(W + 0.0lD)
(E)Porous > 0.01D

(E)solia n

. (4.12)

To validate the above expressions, Egs. (4.11) and (4.12), the experimental results from

the work in Project Activity Task ORD-FY04-013 were used. Accordingly, the total

width of solid columns (W) for each cube was measured as shown in Tables (4.13) to

(4.15). Finally, the results of uniaxial compressive strength and Young’s modulus for

experimental results are plotted as a function of void porosity, total width of solid

columns (W), and void size as shown in Figures (4.20) to (4.27). From the results, the
following observations can be discussed:

1- From Figure (4.20), the relationship of normalized UCS with the total width of

solid columns (W) showed a good agreement, and followed a moderate power

trend with R?> = 0.5. The value of UCS increased when the value of W

increasing, and accordingly, this can be considered as a response of the

hypothesis of using the total width of solid columns to represent the effects of

void geometry on the strength of the Hydro-StoneTB® cubes. Regarding the

deformation, however, the relationship of normalized E with the total width of

solid columns (W) did not show a good correlation; showed a weak power

correlation with R? = 0.26, see Figure (4.21). This may be due to the fact that

the used methods to measure the strains in the experimental tests on porous

cubes (unaixail compression tests) are not adequate; especially in measuring

the lateral displacements. This opinion is supported by the numerical analysis

in Chapter 5; the numerical results gave a very decent correlation between E
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and void porosity (R = 0.9292), see Figure (5.61). It is also supported by the
numerical results in Christianson et al. (2006) and Erfourth (2006).

2- From Figures (4.22) to (4.25), the relationships of normalized UCS and E with
normalized total width of solid columns (W) using D (void diameter or side
length) showed better correlations, and followed good power trends. The
value of R? increased from 0.5 to 0.79 for UCS, and from 0.26 to 0.41 for E.

3- From Figures (4.26) and (4.27), the mathematical expressions in Egs. (4.11)
and (4.12) showed very good agreements. Regarding the strength, UCS, using
the expressions in Egs. (4.11), the relationship gave a very good correlation
following a very decent power trend and the value of R? increased from 0.5 to
0.84. For the deformation, E, using the expressions in Egs. (4.12), the
relationship gave better correlation following a moderate power trend and the
value of R? increased from 0.41 to 0.51. The mathematical expressions in

equations Egs. (4.11) and (4.12) can be represented best by the following

equations:
(UCS)porous W + 0.01 = D1%:3536
— =0.1019 * | ———— R? = 0.8412 .. (4.13
(UCS)solid i [ 0.01*D =*n ] ( )
(E)porous W + 0.01 x D7°-1613 )
Bsona 02" oD n] R®=0.509 ..(41%)

4- From Figure (4.26), using the mathematical expression in Eq. (4.11), the
hypothesis of using the total width of solid columns (W) to express the effects

of void geometry on mechanical properties improved the correlations between
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the uniaxial compressive strength of Hydro-StoneTB® and void geometry. The
percentage of the maximum difference in UCS value, 126% - see Figure (4.2),
reduced to 57%; reduced to less than half. In addition, the coefficient of
determination for uniaxial compressive strength increased from R? = 0.729 to
R?=0.8412.

From Figure (4.27) using the mathematical expression in Eq. (4.12), the
Young’s modulus did not show any distinct response; on the contrary, the
coefficient of determination reduced from R*> = 0.5364 to R* = 0.508.
However, the percentage of the maximum difference in E value, 55.6% - see
Figure (4.3), reduced to 46%; reduced by about 17%. This might be due to the

fact of using inadequate method to measure strains in the experimental tests.
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Table (4.13) Total Width of Solid Columns for Cubes Containing Unisize Circular Voids

Total Width of Solid Columns (W), mm
Sample Name
W1 W» W3 Wy Ws Weg W+ W
PA-UCL2-1 13.54 | 60.63 | 15.95 90.12
PA-UCL2-2 13.63 | 60.63 | 15.95 90.21
PB-UCL2 7.37 | 60.22 | 22.53 90.12
PC-UCL2 6.65 | 59.41 | 24.05 90.11
PA-UCL4-1 13.26 | 34.04 | 16.23 63.53
PA-UCL4-2 11.46 | 30.33 | 13.54 55.33
PA-UCLA4-3 11.46 | 30.33 | 13.54 55.33
PB-UCL4 6.45 | 22.63 | 7.37 | 20.14 56.59
PC-UCL4 0.36 | 24.05 | 6.65 | 13.23 44.29
PA-UCL6 8.33 | 13.54 | 11.46 33.33
PB-UCL6 564 | 20.14 | 7.37 | 13.23 46.38
PC-UCL6 0.36 | 10.57 | 6.65 | 7.04 24.62
PA-UCM4 8.2 | 3485 | 18.06 | 20.5 81.61
PB-UCM4 15.49 | 27.15 | 16.41 | 24.66 83.71
PC-UCM4 94 33.1 | 11.18 | 17.75 71.43
PA-UCMS8 10.87 | 18.15 | 12.85 41.87
PB-UCMS8 6.86 | 24.66 | 11.56 | 16.41 59.49
PC-UCMS8 11.19 | 22.76 | 14.02 47.97
PA-UCM12 12.85 | 18.06 30.91
PB-UCM12 8.15 | 8.56 16.71
PC-UCM12 3.56 | 5.36 8.92
PA-UCS11 043 | 2272 | 181 | 452 | 1751 | 5.61 | 4.32 | 56.92
PB-UCS11 142 | 1322 | 1281 | 154 | 1.93 30.92
PC-UCS11 191 | 15.84 | 10.02 | 3.53 4.7 2.9 242 | 41.32
PA-UCS22 0.74 | 11.82 | 9.61 | 211 24.28
PB-UCS22 1.12 | 13.22 | 1281 27.15
PC-UCS22 251 | 10.02 | 6.52 19.05
PA-UCS33 251 | 6.82 | 6.52 15.85
PB-UCS33 8.22 8.7 16.92
PC-UCS33 6.41 | 6.52 12.93
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Table (4.14) Total Width of Solid Columns for Cubes Containing Mixed Circular Voids

Total Width of Solid Columns (W), mm
Sample Name
W1 W» W3 Wy W5 We W7 W
PA-UXCL1M1S3 | 8.34 | 20.47 | 9.22 | 18.06 | 17.51 73.60
PB-UXCL1IM1S3 | 5.31 | 27.42 | 26.14 | 22.53 81.40
PC-UXCL1IMI1S3 | 6.65 | 24.27 | 22.42 | 18.72 72.06
PA-UXCL2M3S6 | 12.81 | 16.23 29.04
PB-UXCL2M3S6 | 7.37 | 22.53 | 16.22 | 10.97 57.09
PC-UXCL2M3S6 | 0.37 | 18.68 | 13.22 | 6.65 38.92
PA-UXCL2M5S8 | 11.82 | 13.6 25.42
PB-UXCL2M5S8 | 1.25 | 1156 | 11.32 | 3.24 27.37
PC-UXCL2M5S8 | 557 | 13.22 | 6.65 25.44

Table (4.15) Total Width of Solid Columns for Cubes Containing Unisize
Non-circular Voids — Square and Diamond Voids

Total Width of Solid Columns (W), mm
Sample Name
W1 W» W3 Wy Wg Wg W7 W
PA-USgL3 20.82 | 46.96 | 22.31 90.09
PB-USqL3 16.87 | 40.87 | 27.08 84.82
PA-USgL6 12.88 | 20.55 | 18.12 51.55
PB-USqL6 14.73 | 24.69 | 16.46 | 17.78 73.66
PA-USqM6 1.45 | 26.95 | 6.35 | 16.08 | 21.32 72.15
PB-USqM6 20.98 | 30.28 | 21.13 | 22,86 72.39
PA-USgM12 145 | 21.29 | 1.65 | 16.08 | 2.47 42.94
PB-USqM12 11.38 | 11.79 23.17
PA-UDmML3 11.42 | 60.61 | 13.56 85.59
PB-UDmML3 7.73 | 36.3 | 22,51 66.54
PA-UDmML6 8.31 | 13.56 | 11.42 33.29
PB-UDmML6 562 | 20.12 | 13.23 | 7.35 46.32
PA-UDMM6 12.84 | 20.47 | 18.08 51.39
PB-UDmMMG6 15.46 | 24.65 | 17.74 | 16.38 74.23
PA-UDmMM12 8.14 | 8.93 17.07
PB-UDmMM12 2.13 | 21.04 | 11.56 | 9.36 44.09
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Figure (4.20) Normalized Uniaxial Compression versus Total Width of Solid Columns
for Cubes with Voids Having Different Size, Shape and Distribution
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Figure (4.21) Normalized Deformation versus Total Width of Solid Columns for Cubes
with VVoids Having Different Size, Shape and Distribution
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Figure (4.22) Normalized Uniaxial Compression versus Normalized Total Width of Solid
Columns for Cubes with Voids Having Different Size, Shape and Distribution
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Figure (4.23) Normalized Deformation versus Normalized Total Width of Solid Columns
for Cubes with Voids Having Different Size, Shape and Distribution

121

www.manharaa.com




0.6

0.5 -
0.4 -
1)
O
)
T 03 A
N
©
£
S 02 - ©)
z © 8 y = 0.0117x0-6022
O R2=0.7914
0.1 1 O O All Specimens
Power (All Specimens)
0.0 T T T .
0 100 200 300 400 500

[(W (mm)+ 0.01D(mm))/(0.01D (mm))]

Figure (4.24) Normalized Uniaxial Compression versus Normalized Total Width of Solid
Columns for Cubes with VVoids Having Different Size, Shape and Distribution
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Figure (4.25) Normalized Deformation versus Normalized Total Width of Solid Columns
for Cubes with Voids Having Different Size, Shape and Distribution
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Figure (4.27) Normalized Deformation versus Normalized Total Width of Solid Columns
and Void Porosity for Cubes with VVoids Having Different Size, Shape and Distribution
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4.4.6 Correlation between Uniaxial Compression and Young’s Modulus

According to Palchik (1999) and Chawla (2007), uniaxial compressive strength
(UCS) of porous rock and rock-like materials is inversely proportional to the porosity (n)
and directly proportional to the elastic modulus (Young’s Modulus — E). This can be

mathematically written as follow:

E
(UCS)porous & - .. (4.15)
Considering Egs. (4.11), the above expression can be rewritten as follows:
E (W + 0.01D)

0.01D
n

(UCS)porous X .. (4.16)

The test data obtained from the work of Project Activity Task ORD-FY04-013 were used
to validate the above expression, Egs. (4.16). Accordingly, the results of uniaxial
compressive strength of the experimental tests are plotted as a function of Young’s
modulus (E), void porosity (n), total width of solid columns (W), and void size (D) as
shown in Figures (4.28) to (4.30). According to the figures, for the void porosity ranging
from 6.28% to 19.82%, the following results were observed:
1- The uniaxial compressive strength (UCS) of Hydro-StoneTB® is inversely
proportional to the void porosity (see Figure 4.2)) and directly proportional to E
(see Figure (4.28)). The correlation is followed decent power trend as shown in
figure (4.29).
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2- Considering the total width of solid columns (W) to express the effects of void
spatial distribution on mechanical properties led to improve the correlations
between the uniaxial compressive strength of Hydro-StoneTB® with void
geometry and Young’s Modulus. The relationships can be represented best by the
following power equation:

100 « W + D>
—] R? =0.8525 ..(4.13)

(UCS)porous = 31475 [ —
Accordingly, considering total width of solid columns (W) to express the effects of void
spatial distribution on mechanical properties led to better correlations between the
uniaxial compressive strength of Hydro-StoneTB® and Young’s Modulus. The coefficient

of determination increased from R? = 0.7424 to R? = 0.8525.
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Figure (4.28) Uniaxial Compression versus Deformation for Cubes with Voids
Having Different Size, Shape and Distribution
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Figure (4.30) Uniaxial Compression versus Deformation, Void Porosity, and Total Width
of Solid Columns for Cubes with Voids Having Different Size, Shape and Distribution
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4.5 Failure Modes of Hydro-StoneTB® Cubes.

At the end of each experiment in Project Activity Task ORD-FY04-013, the
tested cube was photographed from both front and back. From the photographs, the
dominate failure mode is tension (axial) failure mode. However, depending on bridge
distances, side distances, and alignment of voids with nearby voids, some cubes showed

shear failure mode as well.

4.5.1 Porous Cubes Containing Circular Voids

The photographs for porous cubes containing circular voids with different void
size and distribution are shown in Appendix (I). In general, regardless of void size and
distribution and void porosity, the majority of the cracks were formed at the peripheries
of the voids in the direction of vertical to sub-vertical; oriented approximately parallel to
the applied axial compression. However, there are some horizontal cracks which
connected the vertical to sub vertical cracks to the pore sides or sample side (surface).
Furthermore, some cracks (vertical to sub-vertical) were formed in the solid parts of the
cubes; between voids or/and between voids and the cube sides. Most of the cracks are
extended to the sample surfaces in the direction of axial compression which in turn led to
axial splitting; tension fractures.

From the Figures (4.31) to (4.34), for the porous cubes with circular voids having
different void size (small, medium, and large), different void porosity (about 6%, about
13%, and about 20%), and different void distribution (Pattern A, B, and C), the crack
pattern showed axial splitting (tension fractures or failure) as the dominant failure modes

regardless of void porosity, void size, void uniformity, and void spatial distribution.
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However, in some porous cubes there are some shear failure (inclined cracks) depending
on the void alignments and bridge distances.

In general, the cracks were formed mainly at the void poles and intended to
expand approximately parallel to the axial compression load. However, in some cubes
depending on the distances between one void and the other voids located at the
immediate vicinity of the void, cracks were formed horizontally or sub-horizontally
between adjacent voids. In those cubes, when a crack passes vertically (or sub-vertically)
between two voids, a horizontal crack was formed to connect that crack to the void side
or the sample side. Finally, the coalescence of those cracks (horizontal (or sub-horizontal)
and the vertical (or sub-vertical) cracks) formed an inclined crack that gave a failure

mode similar to the shear failure mode as shown in Figures (4.35) and (4.36).

i _pc-ucr2 |

Figure (4.31) Photographs of Tested Cubes Containing Large Unisize Circular Voids
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| PC-UCMS | :
Figure (4.32) Photographs of Tested Cubes Containing Medium Unisize Circular Voids

po-ccsu | (S

PA-UCS33
Figure (4.33) Photographs of Tested Cubes Containing Small Unisize Circular Voids

SRS g [EC-UXCLaM3S6 PB-UXCL2MS5S8

Figure (4.34) Photographs of Tested Cubes Containing Mixed Circular Voids
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Figure (4.35) Photographs of Tested Cubes Containing Large Unisize Circular Voids

5

-

Figure (4.36) Photographs of Tested Cubes Containing Circular VVoids

4.5.2 Porous Cubes Containing Non-circular Voids

For the porous cubes with either square voids or diamond voids having different
void size (small and large), different void porosity (about 6% and about 13%), and
different void distribution (Pattern A and B), the crack pattern showed axial splitting
(tension fractures or failure) as the dominant failure modes similar to the cubes with
circular voids as shown in Figures (4.37) to (4.40), see also Figures in Appendix (I). Most
of the cracks were formed at the tips of the diamond voids in the direction approximately

parallel to the applied axial compression. Some of these cracks are extended to the
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sample surfaces, again in the direction of axial compression (vertical to sub-vertical),
which in turn led to axial splitting; tension fractures. Some cracks (vertical to sub-
vertical) were also formed in the solid parts of the cubes; between voids or/and between
voids and the cube sides. In addition, there are some horizontal cracks which connected
the vertical to sub vertical cracks to the void tips (or sides) or sample side (surface).
However, in each porous cube there are some shear failure (inclined cracks)
depending on the void alignments and bridge distances. In general, due to stress
concentration, the cracks were formed mainly at the void tips and intended to expand
approximately parallel to the axial compression load, however, in some cubes cracks
were formed between voids horizontally or sub-horizontally depending on the distances
between one void and the other voids located at the immediate vicinity of the void. In
those cubes, when a crack passes vertically (or sub-vertically) between two voids, a
horizontal crack was formed to connect that crack to the void side or the sample side. In
some cubes, the coalescence of those cracks (horizontal (or sub-horizontal) and the
vertical (or sub-vertical) cracks) formed an inclined crack that gave a failure mode

similar to the shear failure mode as shown in Figure (4.41).

PA-USQLG |-

-

ographs of Tested Cubes Containing Large Unisize Square Voids
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‘ PB-USqs6 l PB-USqS12

Figure (4.38) Photographs of Tested Cubes Containing Small Unisize Square Voids

PA-US(S12

Figure (4.39) Photographs of Tested Cubes Containing Large Unisize Diamond Voids

PA-UDmS12 J|_PB-UDmS12

Figure (4.40) Photographs of Tested Cubes Containing Small Unisize Diamond Voids

132

www.manharaa.com



Figure (4.41) Photographs of Tested Cubes Containing Unisize Non-circular Voids

From the photographs, it can be concluded that, due to stress concentration at the
vicinity of the voids, the void existence produced tension stresses at the poles of the
circular voids (or at the tips of non-circular voids) (Timoshenko and Goodier 1951).
When the produced tension stresses exceed the material’s tensile strength, cracks initiate
at the poles (or tips) and then propagate vertically of sub-vertically in the direction
parallel to the applied uniaxial loads if they are not interrupted or diverted by the other
voids. These vertical to sub-vertival cracks will finally reach the top and bottom surfaces
and divide the cubes into two or more vertical to sub-vertical columns. Accordingly, the
tension failure modes dominate the failure modes in the cubes under uniaxial

compression as suggested by Sammis and Ashby (1986)
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CHAPTER FIVE NUMERICAL ANALYSIS TO SIMULATE THE

EXPERIMENTAL TESTS

5.1 Introduction

Since the numerical analysis for the Hydro-StoneTB® cubes tested in the work of
Project Activity Task ORD-FY04-013 (discussed in chapter four) has not been carried
out, the experimental results can be used to validate numerical method (software).
Furthermore, the results of the numerical analysis can be helpful in analyzing the
experimental results. The UDEC program (version 3.1) is the software intended to be
validated in this study. The UDEC codes to be used in this analysis are obtained from
Software Configuration Management (SCM) in according with the AP-SI.1Q procedure.
The program should be only used within the range of validation, as specified in the

software qualification documentation (BSC 2003).

5.2 Numerical Analysis

In engineering, problems are typically solved by using either empirical or
analytical methods (Scheldt 2002). In the empirical methods, the solution is usually done
basing on experiment and comparison, while in the analytical methods, the problems are
solved by either calculation or modeling (Scheldt 2002). In some engineering problems,
the analytical solutions are represented by differential equations with a set of related
boundary and initial conditions (Moaveni 2008). These differential equations are
mathematical models and called governing equations. Due to the complexities embedded

either in the equations themselves or in the boundary and initial conditions, or both, the
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exact solutions of these differential equations are not achievable in many engineering
problems (Moaveni 2008). Alternatively, numerical solutions, or numerical
approximations, are used to deal with such problems. In general, there are two main
numerical models in numerical analysis; continuous and discontinuous models (Scheldt

2002; Jing and Stephenson 2007).

5.2.1 Continuous Numerical Models

In continuous models, the material in the problem domain is assumed to be
continuous throughout the physical processes; the material cannot be broken into pieces
(Jing and Stephenson 2007). In other words, during the simulation process, the points
which are originally in the vicinity of a certain point in the problem domain will stay in
the same neighborhood. Regarding the problem domain contains fractures, continuous
model assumes that the deformations along or across the fractures will be in the same
order of magnitude as those of the solid matrix near the fractures (Jing and Stephenson
2007). This means, large-scale slide or opening of fractures is not allowed in the
continuous models. Therefore, the continuous models are not suitable for engineering
problems which contain fractures except those contain a small number of fractures
experiencing small deformations. They are, however, most effective for problems of
small deformation (strain) and linear constitutive material behavior (Jing and Stephenson
2007). The most universally used numerical methods for continuous models are the finite
difference method (FDM), the finite element method (FEM) and the boundary element

method (BEM) (Scheldt 2002; Jing and Stephenson 2007; Bobet 2010).
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5.2.2 Discontinuous Numerical Models

For discontinuous models, the material in the problem domain is treated as an
assemblage of independent units; a system of individual blocks interacting along their
boundaries such as rock blocks, solid particles of granular materials, structural elements
(Scheldt 2002; Jing and Stephenson 2007; Bobet 2010). The mechanical behavior of the
discontinuous models is composed of two parts; behavior of the individual blocks and
behavior of the boundaries (Cundall and Hart 1992). The discontinuous models are very
effective for problems of large deformation (displacement rotation, slip, and strain) and
nonlinear constitutive material behavior (Scheldt 2002; Jing and Stephenson 2007; Bobet
2010). Regarding the discontinuous models, there are several numerical methods;
however, all of them are covered under a common adopted term called Discrete Element
Method (DEM) (Cundall and Hart 1992; Jing and Stephenson 2007).

In addition to the aforementioned numerical methods, there are two other
numerical methods which cannot be classified based on types of the numerical models.

They are Meshless Methods (MM) and Artificial Neural Networks (ANN) (Bobet 2010).

5.2.3 Differences between Numerical Models

One of the essential differences between the numerical methods for continuous
models (for example, FDM and FEM) and those for discontinuous models (DEM) is the
unit system topology. The unit system topology, or the unit system identification, is the
contact (or connectivity) patterns between individual units in the problem domain, or the
system, which is the central computational issue of the Discrete Element Method (Jing

and Stephenson 2007). In the numerical methods for continuous models, the topology is
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assumed to be fixed throughout the simulation process (it is a fixed initial condition),
while, it evolves with time and deformation process in the numerical methods for
discontinuous models (Jing and Stephenson 2007). In other words, the Discrete Element
Method has capability of detecting and updating of changeable contacts between the
individual units as a result of their movements and deformations.

Another essential difference between the numerical methods for continuous
models and those for discontinuous models is the rigid body mode of motion. In
discontinuous models, the individual block displacements are much larger than the
individual block continuous deformations when a large displacement occurs. While in the
continuous models, since they are not producing strains in the elements, the element
displacements are generally eliminated (Jing and Stephenson 2007). In other words,
discontinues models reflect more the individual unit displacement of the problem domain
and continues models reflect more the material deformation of the problem domains. This
is because the individual blocks in the discontinuous models are free to move according
to the force (or stress) constraints on their boundary contacts and other external loads
according to the equations of motion which is contrary to continuous models in which the
elements are not free to move, but are reserved within the same neighborhood of other

elements by the displacement compatibility conditions.

5.3 Discrete Element Method (DEM)
Discrete element method (DEM) can be defined as any numerical method that has
the following two capabilities (Cundall and Hart 1992): (1) permission of finite

displacements and rotations of the individual units, including total separation of the units,
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and (2) automatic recognition of the new formed contacts during simulation. And basing
on the above definition, they, Cundall and Hart (1992), identified four main codes that
comply with the above definition: Distinct element programs; Modal methods,
Discontinuous deformation analysis (DDA), and Momentum-exchange methods. The
individual units in all four codes can be either rigid or deformable except for the
Momentum-exchange methods (units are rigid only). The deformable means subdividing
the individual units into finite difference zones. The contacts, boundaries between the
individual units, are either rigid (Distinct element programs and Modal methods) or
deformable (DDA and Momentum-exchange methods).

In addition, Bobet (2010) identified another method (or code) of DEM called
Bonded Particle Model (BPM). In this method, BPM, the material in the discontinuous
model is represented by an agglomerate of cemented grains (as discs in two dimensions
or spheres in three dimensions). The grains are assumed to be rigid with a non-uniform
distribution. They interact with each other through their contacts.

The numerical program used in the numerical analysis in this study, Universal
Distinct Element Code (UDEC version 3.1), is described as a Distinct element program
that uses an explicit time-marching scheme to solve the equations of motion of individual
units directly (Itasca 2011, UDEC User’s Guide). The explicit time-marching scheme
means that unknown values of the variables in any individual unit in the problem are
found from known values in the individual unit itself and the surrounding units as well.
The individual units can be either rigid or deformable. The deformable means

subdividing the individual units into finite difference zones.
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The Distinct element program is based on Newton’s second law, F = ma (Scheldt
2002; Itasca 2011, UDEC User’s Guide). It has many diverse applications in different
engineering and science disciplines such as rock mechanics, soil mechanics, structural
analysis, granular materials, fluid mechanics, ice mechanics, material processing, robot
simulation, and computer animation (Jing and Stephenson 2007). It was originally
created for representing a two-dimensional jointed rock mass. The formulation of distinct
element program was initially presented by Cundall (1971). Its most developed version is
embodied in a computer program called Three-Dimensional Distinct Element Code
(3DEC) which has ability to simulate three-dimensional models (Itasca 2011, Theory and

Background Manual).

5.4 Universal Distinct Element Code (UDEC)

The Universal Distinct Element Code (UDEC) is a two-dimensional numerical
program that simulates the behavior of discontinuous geologic materials (such us rock
mass or similar) under thermal, static, and dynamic loading using the distinct element
method (Itasca Consulting Group 2002). It is well-suited program to simulate the large
movements and deformations of a blocky system, using Lagrangian calculation scheme.
In this program, UDEC, the problem domain is represented as an assemblage of
individual units, also called discrete blocks, interacting along their boundaries. The
boundaries are also called discontinuities. They, discontinuities, are treated as boundary
condition along which large displacements and rotations of blocks are allowed (ltasca

2011, UDEC User’s Guide). The relative motion of the discontinuities, in both the normal
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and shear directions, is governed by linear or nonlinear force-displacement relations for
movement.

Regarding the discrete blocks, they can be allowed to behave as either rigid or
deformable blocks. The rigid block assumption is good for a physical system in which
most of the deformation is accounted for by movement on discontinuities such as an
unconfined assembly of rock blocks at a low stress level. One practical example is a
shallow slope in well-jointed rock in which the deformation is mainly come from sliding
and rotation of blocks, and from opening and interlocking of discontinuities. For the other
physical systems, such as models in which high stress is expected, deformable block
assumption is better one. In this assumption, UDEC automatically subdivides the discrete
blocks into a mesh of finite-difference elements (triangular, constant-strain zones), and
each element responds according to a prescribed linear or nonlinear stress-strain law
(Itasca 2011, UDEC User’s Guide). The zones can also follow an arbitrary, nonlinear
constitutive law.

Accordingly, several built-in material constitutive models have been embedded in
UDEC for both the discrete blocks and the discontinuities. The built-in constitutive
models in UDEC range from linearly elastic models to highly nonlinear plastic models
(Itasca 2011, UDEC Constitutive Models). They are grouped into two types; time-
independent and time-dependent constitutive material models (creep) (ltasca 2011,
UDEC Constitutive Models). The time-independent material models are fourteen models
and arranged into three groups; null (one model), elastic (two models) and plastic model
(eleven models) groups. The Null model group is used to represent material that is

removed or excavated (to simulate voids, tunnels, for example). Some of the built-in
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plastic constitutive models are Drucker-Prager model, Mohr-Coulomb model, Hoek-
Brown model, and modified Hoek-Brown model. Regarding the time-dependent material
models, eight creep models available in the creep model option for UDEC (Itasca 2011 -
Creep Material Models).

UDEC is considered as a distinguished program due to its capability to address
three most common difficulties in geomechanics; physical instability, path dependency of
nonlinear materials, and implementation of extremely nonlinear constitutive models
(Itasca, 2011, UDEC Constitutive Models). Physical instability can occur when softening
behavior in the modeled material is expected; when the material fails, part of it
accelerates and the stored energy is released as kinetic energy. Therefore, the numerical
solution may fail to converge. For the second difficulty, path dependency of nonlinear
materials, there are an infinite number of solutions that satisfy the equilibrium,
compatibility and constitutive relations that describe the system. However, the numerical
solution scheme should be able to accommodate different loading paths in order to apply
the constitutive model properly; to find the “correct” solution. For the third difficulty, the
nonlinearity of the stress-strain response, there are several forms of nonlinearity in geo-
engineering materials which should be accommodated in the numerical program such as
nonlinear dependence of both the elastic stiffness and the strength envelope on the
confining stress, and different post-failure response in the tensile, unconfined and
confined regimes. UDEC has capability to overcome on the aforementioned three
difficulties by using an explicit, dynamic solution scheme embedded in it (Itasca, 2011,
UDEC Constitutive Models). In other words, first, since the inertial terms are included

(kinetic energy is generated and dissipated), the numerical solution is stable (due to the
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explicit, dynamic solution) even when the simulated geomechanical system is unstable.
Second, the explicit, dynamic solution scheme has ability to follow the evolution of a
geomechanical system in a realistic manner; since the full law of motion is embedded in
it, the explicit, dynamic solution scheme can follow the physical path and evaluate the
effect of the loading path on the constitutive response. Third, very nonlinear constitutive
models can be complimented in UDEC because of the explicit, dynamic solution scheme;
the field quantities at each element in the model, such as forces/stresses and
velocities/displacements, can be isolated from one another during one calculation step in

the general calculation sequence.

5.5 UDEC Model Description

The UDEC models are more realistic numerical models for studying the effects of
voids on the mechanical behavior of rocks and rock-like material because of their ability
to (1) represent physical voids in the material and (2) model complex failure mechanisms,
such as fracture initiation and propagation between voids (Rigby 2004). The following
two details can be helpful to explain why the UDEC models are more realistic in studying
the mechanical behaviors of porous materials.

First, due to its capability of simulating crack initiation and propagation
(fracturing) in the material when the stress exceeds strength, VVoronoi tessellation joint
generator embedded in UDEC is powerful tool to represent materials in numerical models
(Itasca Consulting Group 2002). For numerical models using Voronoi tessellation joint
generator, the material domain is divided into small elastic blocks (discrete blocks) that

are attached together across their boundaries as shown in Figure (5.1) (Itasca Consulting
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Group 2002; BSC 2003). For the plane-strain assumption in UDEC models, the blocks
are considered to have an infinite depth. Regarding the discontinuities or joints, the
contacts between the blocks, they are represented as liner interface contacts of finite
length. The blocks, also called VVoronoi blocks, are randomly-sized small polygons that
can be uniformly distributed throughout the tessellation region by using Voronoi
algorithm (Itasca 2011, UDEC User’s Guide). In the Voronoi algorithm, movable points
(also called seeds or interior points) are randomly distributed within the material domain.
To obtain uniform sized VVoronoi blocks, the seeds must be distributed more uniformly.
Hence, an iteration procedure is used to move the seeds to an arrangement in which the
distances between the seeds are approximately equal. The interior points (seeds) are then
connected to create triangles. In the final step, all triangles that share a common side are
bisected by drawing perpendicular lines to construct the VVoronoi polygons (Itasca 2011,
UDEC User’s Guide). The necessity of having small, uniformly distributed blocks and
block boundaries is to allow cracks to initiate and propagate (internal fracturing) and
blocks to loosen and detach as the evolving stress state dictates. In other words, the block
boundaries act as potential, or incipient, invisible fracture locations and become visible
when the yielding begins (local failure for a given stress path) (BSC 2003).

Second, the UDEC has several constitutive models that can control the
mechanical behaviors of the block boundaries, potential fracture locations (ltasca 2011,
Theory and Background Manual; BSC 2003). Among them is Coulomb slip model with
residual strength in which the most realistic behavior of physical joints can be modeled.
In Coulomb slip model with residual strength one, the elastic behavior of potential

fractures is controlled by constant normal and shear stiffness, and should be consistent
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with the blocks elastic properties (Young’s modulus and Poisson’s ratio of the Vorouni
blocks) (BSC 2003; BSC 2004). In addition, in this constitute model, it is allowed to the
potential fracture to sustain a finite tensile stress, and its slip conditions is controlled by
potential fracture’s cohesion and friction angle prior to fail. If a potential fracture fails,
either in tension or shear, tensile strength and cohesion are set to zero, whereas the
friction angle is set to the residual value.

In sum, the UDEC models has a good ability to simulate the physics of
deformation and fracture of a bonded granular matrix that contains void space of varying

shape, size and porosity(Righy 2004).

Wy

_ k”.!”‘

/‘."”. v

Figure (5.1) Material Representation in UDEC Models Using VVoronoi
Tessellation Joint Generator (BSC 2003)

5.6 UDEC Model Calibration
In order to represent the actual material used in the experimental tests in the
UDEC models using Voronoi tessellation, the UDEC must be calibrated (BSC 2003).

Calibration is usually done by matching the numerical model macro-behavior with the
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one of the experimental test (BSC 2003). This can be done through adjusting the micro-
properties of the numerical models until the macro properties of the two models
(numerical and experimental obtained from the actual tests) are matched.

Calibration is a trail-and-error procedure with considering previous experience
and some understating of the model mechanical behavior (BSC 2003: BSC 2004; Righy
2004). Due to the high uncertainty in the material property database, assigning
appropriate properties to the model material (calibration) is the most difficult part in the

model generations (Itasca 2011, UDEC User’s Guide).

5.6.1 Calibrated Material Properties

In the calibration, the loading and boundary conditions in the UDEC models
should be similar to those in the experimental tests. Accordingly, those requirements
were achieved by mimicking the idealized conditions assumed in uniaxial compression
testing (two-dimensional plane strain); vertical translations along both bottom and top of
the specimen in the y-directions are allowed by freeing gridpoints to move vedrtically.
Furthermore, the gridpoints along the model’s vertical sides are freed to move
horizontally. The uniaxial compression test was simulated by applying a fixed velocity of
5x10° meter per second along the top and bottom rows of zones of the specimen.
Stresses, strains and total unbalanced force will be monitored throughout the tests.

According to BSC (2003), the mechanical behaviors of UDEC models with
Voronoi tessellation, using Mohr-Coulomb constitutive model for blocks and Coulomb
slip model with residual strength for joints, are characterized by the followings

parameters:
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1- Size ratio between the models and the discrete blocks; numbers of the discrete
blocks in the model.

2- Elastic properties of the discrete blocks; properties (E™ and v", from Figure
(5.1)).

3- Elastic properties of the discontinuities (normal stiffness, k,, and shear
stiffness, ks, see Figure (5.1)).

4- Plastic properties of the discontinuities; strength properties (tensile strength,
t", cohesion, ¢", and friction, @™, see Figure (5.1)).

5- Post failure plastic properties of the discontinuities. The strength properties of
the discontinuities at the onset of yield are different from the initial, or
original, values. They usually decrease to smaller value or zero.

As a result, the following parameters must be calibrated before starting the simulations
using UDEC program: normal stiffness (k,), shear stiffness (ks), tensile strength (t™),
cohesion (c™), and friction (@™) for the block boundaries (micro- joints between the
Voronoi blocks), Young’s modulus (E™) and Poisson’s ratio (»™) for the VVoronoi blocks.
However, since it is assumed that the material in the Voronoi blocks has isotropic
behavior in elastic range, bulk modulus (K™) and shear modulus (G™) were used in UDEC
rather than Young’s modulus,(E™) and Poisson’s ratio (v") (Itasca 2011, UDEC User’s

Guide). The elastic constants, K and G, can be obtained from the following equations:

Em
m __
K™ = —3(1 ~2om) ..(5.1)
Em
m —
G = —2(1 o ..(5.2)
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According to the previous works in the literature (BSC 2003; Rigby 2004; BSC
2004), calibration for model deformability and strength can be carried out separately, and
it is common to start with the model deformability (elastic properties). The model’s
deformation is controlled by the kn, ks, K™ and G™, while the model’s strength is
controlled by ¢, @, and t™; the compressive strength is controlled by ¢ and @™, and the

model’s tensile strength is controlled by the t". (BSC 2003; Rigby (2004),

5.6.2 Deformation Calibration

UDEC’s model elastic properties (E and v) are functions of VVoronoi block size
and four micro-properties (kn, ks, K", and G™) (BSC 2003). The Voronoi block size is
usually determined based on observed fracture spacing and the condition that the ratio
between the inclusion size (such as tunnel radius) and the block size is sufficiently large
(>15, see BSC 2004) (BSC 2003 and 2004; Rigby 2004). In this numerical analysis, since
the Hydro-StoneTB® cubes tested in the actual tests were free from fractures and the
smallest radius of the existing void (sizes) were extremely small compared to a actual
tunnel radius, the first parameter mentioned in BSC (2003), size ratio between the models
and the discrete blocks, has not been followed. Therefore, the minimum possible block
size was considered; the model was subdivided into VVoronoi blocks with average edge
length of 3.5 mm (0.0035 m).

Regarding the micro-properties for the deformation calibration, the values shown
in Table (5.1) were adopted considering the following:

1- The macro-elastic properties of the actual material used in the experimental tests

were selected for the micro-elastic properties of the Voronoi blocks; E™ = 16 GPa
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and v" = 0.28. Rigby (2007) carried out several tests on the rock-like material,
Hydro-StonTB® to find the macro-elastic properties. The tests were unaxial
compression tests on both cylindrical (50.8x101.6 mm) and cubic specimens (150
mm per side). Accordingly, the values K™ = 12.1212 GPa and G™ = 6.25 GPa
were selected. The ratio of K™/G™ is equal to 1.94.

2- According to the literature (BSC 2003 and 2004; Rigby 2004), it is desirable,
from the perspective of convergence of the numerical model, to select a ratio of
micro-joint stiffnesses (ratio of normal stiffness, k,, to shear stiffness, ks.) similar
to the ratio of K™/G™. Accordingly, a value close to the ratio of K"/G™ (1.94) was
selected for the ratio of ky/ks (ratio of micro-joint stiffnesses); kn/ks, = 2.

3- Finally, the appropriate macro deformability for the UDEC model was obtained
by rescaling the elastic micro-joint stiffnesses; both normal stiffness, k., and shear

stiffness, ks.

5.6.3 Strength Calibration
Once the deformability calibration finished, the strength calibration was started by
rescaling the plastic properties of the micro-joints (tensile strength, t™, cohesion, ¢", and
friction, ¢™) following these considerations:
1- According to the mechanical properties of materials, the macro tensile strength, t,
is typically about 10 percent of the macro compressive strength; t = 0.1*55 = 5.5
MPa. In addition, Nott (2009) carried out several Brazilian tests on (101.6x50.8
mm) cylinders of Hydro-StoneTB®, and found that the tensile strength of the
Hydro-StoneTB® to be equal to 5.516 MPa (800 psi). Therefore, 5.516 MPa

(about 10% of 55 MPa) was adopted as the macro tensile strength of the
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numerical models. The micro-joint tensile strength, t", which gave the macro

tensile strength, t = 5.516 MPa, was then obtained by rescaling the micro-joints in

the UDEC models.

2- Since the micro-joint compressive strength is controlled by two parameters (c™,
and ¢™), the same macro compressive strength can be obtained by unlimited pairs
of the compressive strength parameters. Accordingly, as shown in Appendix I,
six pairs of the micro-joint compressive strength parameters were tested and one
of them was selected basing on the failure mode; the micro-joint compressive
strength parameters (c", and ¢™), which gave failure mode close to the
experimental cube’s failure mode was selected.

3- The common residual values for physical joints were selected for the UDEC
models. According to Itasca’s Theory and Background Manual (2011), usual
residual values for tensile strength, t", cohesion, ¢, are zero for the cracks or
joints at which failure has been occurred. For the friction angle (¢™) of the micro-
joints, the value started from 31° and softened in a brittle fashion to 11° after
which no effect of residual angles was observed.

4- The full calibration for zero-porosity model was then achieved after simulating
more than seventy models.

The numerical models simulated during the calibration processes to obtain the
calibrated model are shown in Tables (11-A) and (I1-B) in Appendix Il. The stress-strain
curves and failure mode for the calibrated model are also shown in Appendix II; Figure
(11-A) and (11-B). The material properties for the calibrated model used as UDEC input

data for Hydro-Stone TB® specimens are shown in Table (5.1).
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Table (5.1) UDEC Input Data for Hydro-StoneTB® Specimens

Type Description Value Units
Den Density 1.7x10° kg/m®
K" Bulk Modulus 12.1212 x 10° Pa
G" Shear Modulus 6.25 x 10° Pa
jten, t" Tensile Strength of Micro-joints 16.072 x 10° Pa
jfric, @™ Friction Angle of Micro-joints 31 Degree
jcoh, C" Cohesion of Micro-joints 26.01735x 10° Pa
resTen Residual Tensile Strength of Micro-joints 0 Pa
resFric Residual Friction Angle of Micro-joints 11 Degree
resCoh Residual Cohesion of Micro-joints 0 Pa
Kn Micro-joint Normal Stiffness 72728 x 10° Pa/m
ks Micro-joint Shear Stiffness 36364x 10™ Pa/m

5.6.4 Numerical Simulations for Porous Cubes

The UDEC model calibrated in the previous section was for solid, zero porosity
samples at a uniaxial compressive strength of 55 MPa and a Young’s modulus of 16 GPa.
The porous samples can then be simulated through adding voids to the same calibrated
solid model and test it under the same load condition as it was in the experimental tests.
Accordingly, the 152.4 mm cubes tested in the Project Activity Task ORD-FY04-013
were simulated in UDEC under unaxial compression loading as 152.4 mm squares with
different void porosity, void shape, void size, and void distribution. The void sizes, void
shapes, void spatial distributions, and void porosity were corresponding to those in the

experimental tests.

5.7 Results and Discussions
Fifty five models, 52 squares with 152.4 mm per side, containing voids with
different size, shape, distribution and uniformity were simulated in UDEC for this
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numerical analysis. The simulated models and their corresponding stress-strain curves are
shown in Appendix Ill. The peak value, ultimate strength, of the stress-strain curve was
taken as the uniaxial compressive strength (UCS) each model. From the slope of a
straight line drawn between 25% and 50% of the uniaxial compressive strength on the
stress-strain curves, the secant Young’s modulus (E) was obtained for each model. The
results are also shown in tables and figures in this chapter.

For numerical models having void porosities ranging from 6% to 20%, regardless
of the void size, void distribution, and void uniformity, the numerical results like the
experimental results showed decreases in both UCS and E with increasing void porosity.
However, there is relatively less scatter or overlap for the numerical results compared to
the experimental ones. Accordingly, the coefficients of determination, R? for both

numerical UCS and E are higher than those for the experimental results.

5.7.1 Numerical Simulations for Models Containing Circular Holes

The results of UCS and E for the numerical models containing circular voids
(both unisize and mixed) are plotted in Figures (5.2) to (5.18). The results are also shown
in Tables (5.2) and (5.3). Basing on the numerical results, the following observations can
be discussed:

1- For the void porosity ranging between 6% and 20%, regardless of the void size,
void distribution, and void uniformity, the numerical results showed decreases in
both UCS and E with increasing porosity. However, the coefficients of
determination, R?, for Young’s modulus are higher than those for the uniaxial

compressive strength.
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2- From Figures (5.2) and (5.3), regardless of the void size (large, medium, and
small size voids), void distribution (patterns A, B, and C), and void uniformity
(either unisize or mixed voids), the numerical models having similar porosity
showed similar reduction in both UCS and E. The reductions followed
exponential trends with higher coefficients of determination, R? for E. The
numerical results for UCS showed more scatterings than those for E.

3- Figures (5.4) to (5.11) show the relationships between UCS, and E with void
porosity for models containing circular voids (either unisize voids or mixed voids)
with different void distributions (void patterns). According to the figures, the
numerical results showed similar reduction in both UCS and E with void porosity
increasing. Accordingly, the different void distributions (patterns A, B, and C),
did not show discernible effects on the mechanical properties of Hydro-StoneT®®.

4- From Figures (5.12) and (5.13), after merging all the numerical results for the
models containing circular voids (either unisize voids or mixed voids), the merged
numerical results also showed exponential reductions with increasing porosity for
both UCS and E. The relationship between both strength (UCS) and deformation
(E) and void porosity can be represented best by equations as follows:

UCS(MPa) = 43.381 x e~ 0.045+(Porosity(%)) R? = 0.8595 ..(5.3)

E(GPa) = 16 * ¢~0:029+(Porosity(%)) R% = 0.9594 .. (5.4)

5- In order to check the validity of the ratio of void size to specimen size, all the
numerical results for the models containing circular voids (either unisize voids or

mixed voids) except the models containing large unisize circular voids are merged
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and plotted as a function of void porosity in Figures (5.14) and (5.15). The
merged numerical results similarly showed exponential decreases in both UCS
and E with increasing void porosity. However, the coefficient of determinations,
for both UCS and E, are slightly higher than those of all the numerical models
including models containing large unisize circular voids. The relationship
between both strength (UCS) and deformation (E) and void porosity can be
represented best by exponential equations as follows:

UCS(MPa) = 43.992  ¢~0.047+(Porosity(%)) R?=0.8666 ..(5.5)

E(GPa) = 15.934 x ¢~0-028+(Porosity(%)) R2=009868  ..(5.6)

This might be due to the ratio of the sample size (core diameter or cube length) to
the inclusion size (grain or void diameter). According to ASTM D 45 43 (2001)
and ISRM (1978), the ratio of the sample size (core diameter or cube length)
should be at least six to ten times that of the inclusion size (grain or void
diameter). For the Hydro-StoneTB® cubes, the ratio for the large voids (31.14 mm
in diameter) is less than five (cube length is 15.24 mm).

The relationships between UCS and E are plotted in Figures (5.16) to (5.18).
According to the figures, the uniaxial compressive strength increased with
increasing deformation modulus (Young’s modulus) following power trends. The
merged results of numerical models containing both mixed and unisize voids
except large unisize voids gave better correlation, and can be represented best by
power equation as follows:

UCS(MPa) = 0.4249 = (E(GPa))678 R? = 0.8943 ..(5.7)
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Figure (5.5) Compressive Strength versus Void Porosity for Numerical Models
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Figure (5.7) Compressive Strength versus Void Porosity for Numerical Models
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Figure (5.9) Deformation versus Void Porosity for Numerical Models Containing
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Figure (5.13) Deformation versus Void Porosity for Numerical Models Containing
Circular Voids— Both Unisize and Mixed Voids
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Figure (5.15) Deformation versus Void Porosity for Numerical Models Containing
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Table (5.2) Numerical Results for the Models Containing Circular Voids — Unisize Voids

Porosity (n) Numerical UCS Numerical E (25-50%)
Sample Name
% MPa Gpa
PA-UCL2-1 6.56 30.695 13.099
PA-UCL2-2 6.56 31.934 12.419
PB-UCL2 6.56 38.537 12.973
PC-UCL2 6.56 31.852 13.331
PA-UCL4-1 13.12 23.689 11.215
PA-UCL4-2 13.12 23.301 10.252
PA-UCL4-3 13.12 25.765 10.299
PB-UCL4 13.12 23.623 10.247
PC-UCL4 13.12 23.583 10.874
PA-UCL6 19.68 20.406 8.145
PB-UCL6 19.68 19.638 8.890
PC-UCL6 19.68 20.323 8.860
PA-UCM4 6.61 31.792 12.904
PB-UCM4 6.61 35.185 13.049
PC-UCM4 6.61 34.512 13.166
PA-UCMS 13.21 26.791 11.158
PB-UCM8 13.21 25.354 11.023
PC-UCM8 13.21 24.024 10.936
PA-UCM12 19.82 17.409 9.191
PB-UCM12 19.82 19.287 8.804
PC-UCM12 19.82 12.533 8.650
PA-UCS11 6.07 35.969 13.519
PB-UCS11 6.07 31.017 13.450
PC-UCS11 6.07 31.552 13.440
PA-UCS22 12.14 24.724 11.373
PB-UCS22 12.14 21.823 11.276
PC-UCS22 12.14 24.205 11.403
PA-UCS33 18.22 20.033 9.746
PB-UCS33 18.22 17.555 9.704
PC-UCS33 18.22 18.335 9.583
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Table (5.3) Numerical Results for the Models Containing Circular VVoids — Mixed Voids

Porosity Numerical UCS Numerical E (25-50%)
Sample Name (n)
% MPa Gpa
PA-UXCL1M1S3 6.59 30.721 12.997
PB-UXCL1M1S3 6.59 30.046 13.412
PC-UXCL1M1S3 6.59 31.594 13.249
PA-UXCL2M3S6 14.83 20.706 10.485
PB-UXCL2M3S6 14.83 23.533 10.715
PC-UXCL2M3S6 14.83 22.533 10.533
PA-UXCL2M5S8 19.24 20.840 9.428
PB-UXCL2M5S8 19.24 19.801 9.299
PC-UXCL2M5S8 19.24 16.250 9.050

5.7.2 Numerical Simulations for Models Containing Non-Circular Holes

The relationships between uniaxial strength, UCS, and deformation, E, for the

numerical models containing non-circular voids (square and diamond voids) are plotted

in Figures (5.19) to (5.31). The results are also shown in Table (5.4). According to the

results, the following observations can be discussed:

1- The numerical results showed decreases in both UCS and E with increasing void

porosity. The reductions followed exponential trend with high coefficients of

determination, R?, for E.

2- From Figures (5.19) to (5.22), for models containing either square or diamond

voids, regardless of the void size (large and medium size voids) and void

distribution (patterns A and B), the numerical results for models having similar

porosity showed similar linear reduction in both UCS and E. Hence, the used

void size and void distributions did not show distinct effects on the mechanical

properties of Hydro-StoneTB®.
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3- From Figures (5.23) to (5.28), regardless of the void size (large and medium size
voids), and void distribution (patterns A and B), the numerical models containing
square voids showed slightly higher UCS and E compared to the numerical
models containing diamond voids. This might due to smaller total width of solid
columns, W, for the models containing diamond voids compared to those
containing square voids. This may in turn lead to higher strength.

4- From Figures (5.25) and (5.28), after merging all the numerical results for the
models containing non-circular voids (either square or diamond voids), the
merged numerical results showed exponential reduction with increasing porosity
for both UCS and E regardless of void size and void distribution. The relationship
between both strength (UCS) and deformation (E) and void porosity can be
represented best by the following equations:

Square Voids ...UCSqpy) = 46.758  ¢~0:051=(Porosity(%))  R2 = 0.8722 ...(5.8)

Diamond Voids ...UCSqpay = 50.798 x =0-072+(Porosity(%)) - R2 = 09359 ... (5.9)
Square Voids ... Egpay = 16.46  ¢~0-033*(Porosity()) R% = 0.9688 ...(5.10)
Diamond Voids ... Egpay = 16.855 % e~0.036*(Porosity(0))  p2 = 0.8984 ... (5.11)

5- The relationships between uniaxial compressive strength, UCS, and deformation,
E, are plotted in Figures (5.29) to (5.31). According to the figures, the uniaxial
compressive strength increases with increasing deformation modulus (Young’s
modulus). The relationships followed power trend and can be represented best by
the following equations, from Figure (5.31):

Square Voids ...UCSqpay = 0.7258(E(GPa))**811 R?=0.8379 ..(5.12)

Diamond Voids ...UCSqpa) = 0.3245 * (E(GPa))'8°%*  R? = 0.8618 ..(5.13)
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Figure (5.20) Compressive Strength versus Void Porosity for Numerical Models
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Diamond Voids

167

www.manharaa.com




Numerical UCS (MPa)

40

35 -
30 -
O
25 O
o
20 - o
y = 41.165e0.03%
R2=0.9037
15 -
y = 53.17570.075
R?=10.9841
10 - O  Square Voids - Large Size
©  Diamond Voids - Large Size
5 1 Expon. (Square Voids - Large Size)
Expon. (Diamond Voids - Large Size)
0 T T T T T T
0 2 4 6 8 10 12 14

Porosity, n (%)

Figure (5.23) Compressive Strength versus Void Porosity for Numerical Models
Containing Large Non-Circular VVoids — Both Square and Diamond Voids

Numerical UCS (MPa)

40

35

30

25

20

15

10

1 |y =52.969¢-0.067

R?=0.9978 <
| |y =48.455¢006%

R2=0.9026
i O Square Voids - Small Size

¢ Diamond Voids - Small Size
- Expon. (Square Voids - Small Size)
Expon. (Diamond Voids - Small Size)

0 2 4 6 8 10 12

Porosity, n (%)

14

Figure (5.24) Compressive Strength versus VVoid Porosity for Numerical Models
Containing Small Non-Circular Voids — Both Square and Diamond Voids

168

www.manharaa.com



40

35 -
= 30 - o
o
= O
) -
8 25
= y = 46.758¢0-051x 5
o 20 - R2=0.8722
b}
IS y = 50.789¢70.072x
= 15 - R? = 0.9359
O  All Square Voids
10 -
< All Diamond Voids
5 - Expon. (All Square Voids)
Expon. (All Diamond Voids)
O T T T T T T
0 2 4 6 8 10 12 14

Porosity, n (%)

Figure (5.25) Compressive Strength versus Void Porosity for Numerical Models
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Figure (5.28) Deformation versus Void Porosity for Numerical Models Containing Non-
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Figure (5.30) Compressive Strength versus Deformation for Numerical Models
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and Diamond Voids

Table (5.4) Numerical Results for the Models Containing Non-Circular VVoids — Square

Sample Name Porosity (n) | Numerical UCS Numerical E (25-50%)
% MPa GPa
PA-USgL3 6.28 33.484 13.361
PB-USqL3 6.28 32.685 13.449
PA-US(gL6 12.56 25.315 10.536
PB-USqL6 12.56 27.922 11.047
PA-USqM6 6.32 34.478 13.390
PB-USqM6 6.32 35.058 13.230
PA-USqM12 12.65 22.562 11.182
PB-USqM12 12.65 23.081 10.602
PA-UDmML3 6.28 33.683 12.430
PB-UDmML3 6.28 32.919 12.878
PA-UDmML6 12.56 20.024 9.593
PB-UDmML6 12.56 21.713 9.575
PA-UDMM6 6.32 32.102 12.526
PB-UDmMM®6 6.32 30.540 12.679
PA-UDmMM12 12.65 18.338 10.239
PB-UDmMM12 12.65 22.323 10.829
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5.7.3 Numerical Simulations for All Experimental Tests — All Cubes
The numerical results for the models containing voids with different size (large,
medium, and small), shape (circular, square, and diamond), distributions (pattern A, B,
and C), and uniformity (unisize and mixed voids) are merged and plotted in Figures
(5.32) to (5.37). According to the merged results, the following observations can be
discussed:
1- From Figures (5.32) and (5.33), the numerical results showed decrease in both
UCS and E with increasing void porosity. The relationship between both strength
(UCS) and deformation (E) and void porosity can be represented best by power
equations as follows:
UCS(MPa) = 85.092 * ((Porosity(%))~1)0511 R? =0.8432 ..(5.14)
E(GPa) = 23.732 = ((Porosity(%))~1)03174 R?=0.9139 ..(5.15)
2- The relationships between UCS and E are plotted in Figures (5.34) and (5.35).
According to the figures, the uniaxial compressive strength increased with
increasing Young’s modulus following power trend. For the merged results of
numerical models containing both mixed and unisize voids except large unisize
circular voids, the relationship between UCS and E can be represented best by
power equation as follows:
UCS(MPa) = 40.65 * (E(GPa))'7°2°  R2 =0.8845 ..(5.16)
3- From Figures (5.2) and (5.32), the numerical strength results (numerical UCS)
followed the same trends of the experimental strength results. However, the data
scattering reduced and the coefficients of determination increased; the value of R?

increased from 0.729 to 0.843. In addition, the percentages of the maximum
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differences in UCS values reduced to 25.4%, 40%, and 62.8% for void porosities
6.5%, 12.6% and 19.6% respectively; the differences reduced by more than half.
Accordingly, up to half of the differences in the experimental UCS values can be
attributed to the uncertainties existing in the experimental uniaxial tests.

Similarly, from Figures (5.3) and (5.33), the numerical deformation results
(numerical E) followed the same trends of the experimental deformation results.
However, the data scattering tremendously reduced and the coefficients of
determination increased very much; the value of R? increased from 0.5364 to
0.914. In addition, the percentages of the maximum differences in E values
reduced to 8.1%, 16.7%, and 12.9% for void porosities 6.5%, 12.6% and 19.6%
respectively; the differences reduced by more than half for void porosity equal to
and greater than 12.6%, while for void porosities of 6.5%, the differences reduced
by about 85%. This might be due to the efficiency of the strain measurement in
the numerical simulation which in turn means that the method used to measure
strains in the experimental tests were not adequate. Therefore, great care must be
taken regarding strain measurement for unaixail compression tests.

From the stress- strain curves shown in Appendix (I1), the axial-stress-axial-strain
curve for solid model is composed of a peak stress followed by a very sharp
descending portion as suggested by Sammis and Ashby (1986), see Figure (11.1).
However, the sharpness was reduced in the porous models regardless of void
porosity, void orientation, and void special distribution, see the axial-stress-axial-
strain curve in Appendix (I11). Accordingly, the existence of voids could reduce

the brittleness of rock-like materials.
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5.8 Numerical versus Experimental Results

In order to provide an understanding of the future usage and accuracy of UDEC as
a modeling tool for porous materials, it will be helpful and useful to compare the result
sets from both numerical and experimental analyses. Accordingly, the results of uniaxial
compressive strength and Young’s modulus for both numerical and experimental
analyses are plotted as a function of void porosity in Figures (5.36) to (5.66). The results
are also shown in Tables (5.5) to (5.12). According to the results, the following
observations can be discussed:

1- From Figures (5.36) to (5.62), regardless of void geometry, the numerically
calculated values of both UCS and E showed similar trends (logarithmic
trend) to those obtained from the experimental compression tests on the
Hydro-StoneTB® cubes. However, from Figures (5.60) and (5.61), the
coefficients of determination for numerical results are much higher than those
of the experimental results; for UCS, the R? increased from = 0.7577 to
0.8733, and for E, the R? increased from = 0.524 to 0.9292. Accordingly, it
can be concluded that validation of the UDEC was successful.

2- In addition, the numerical relationship trend (power trend) between UCS and
E, as shown in Figure (5.62), shows better correlation compared to the
experimental relationship trend. From the figures, the coefficient of
determination (R? = 0.8351) for numerical results is much higher than the one
of the experimental results (R? = 0.5041).

3- As seen from the figures and tables, the numerically calculated values of both

uniaxial compressive strength and Young’s modulus overestimated the values
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of experimental tests. The differences are attributed to either modeling a three-
dimensional medium in two dimensions plane strain, or inability to model
the friction between the steel platen and the Hydro-StoneTB® surfaces (top
and bottom faces), or both (Avar 2002).

The overestimations are higher for uniaxial compressive strength compared to
those of the deformation. The ratios of the numerical results to the
experimental results ranged between 1.16 to 2.26 and 1.004 to 1.44 for
uniaxial compressive strength and Young’s modulus respectively; see Tables
(5.6) and (5.8). Furthermore, the average of ratios of experimental values to
numerical values for uniaxial compressive strength (1.642) is higher than
those for Young’s modulus (1.192).

As shown in Figures (5.36) to (5.38) and Table (5.11), the overestimations for
models containing unisize circular voids increase with void size increasing.
The average of ratios of experimental uniaxial strength to numerical uniaxial
strength for models containing large voids (1.799) is higher than those of
models containing medium voids (1.652) or small voids (1.462). However, as
shown in Figures (5.41) to (5.43) and Table (5.12), the overestimations of
deformation for models containing unisize circular voids did not show
discernible differences. The dependence of the deformation overestimations
on the void size is small. However, the average of ratios of experimental
uniaxial strength to numerical uniaxial strength for models containing square
voids (1.216) is higher than those of models containing diamond voids (1.084)

or small voids (1.20).
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6- The effect of void size on the overestimation is also true for the models
containing non-circular voids, see Figures (5.46) to (5.51). For models
containing square voids, from Table (5.11), the average of ratios of
experimental uniaxial strength to numerical uniaxial strength for models
containing large voids (1.428) is higher than those of models containing
medium voids (1.343). For models containing diamond voids, from Table
(5.11), the average of ratios of experimental uniaxial strength to numerical
uniaxial strength for models containing large voids (1.823) is higher than
those of models containing medium voids (1.503). Similarly, the dependence
of the deformation overestimations on the void size is small as shown in
Figures (5.54) to (5.57) and Table (5.12).

7- As shown in Figures (5.63) to (5.66), the dependency of the overestimations
(the differences between the experimental and experimental values for both
strength and deformation) on void porosity is very small. The ratio of the
numerical deformation to the experimental deformation did not give any
relationship with void porosity (see Figures (5.65) and (5.66)) while the
values of the uniaxial compressive strength gave a very poor correlation (see
Figures (5.63) and (5.64)).

8- Finally, from the numerical results shown in the figures and tables, it can be
concluded that the experimental tests have been carried out with great cares
and attentions; the standard procedures for the cube sampling, cube testing,
and measuring of stress and strain values were followed with great cares and

attentions.
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Figure (5.37) Compressive Strength versus VVoid Porosity for Specimens Containing
Unisize Circular Voids — Medium Size
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Figure (5.39) Compressive Strength versus VVoid Porosity for Specimens Containing
Unisize Circular Voids — Mixed Size
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Figure (5.40) Compressive Strength versus Void Porosity for Specimens Containing
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Figure (5.41) Deformation versus Void Porosity for Specimens Containing Unisize
Circular Voids — Large Size
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Figure (5.42) Deformation versus Void Porosity for Specimens Containing Unisize
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Figure (5.43) Deformation versus Void Porosity for Specimens Containing Unisize
Circular Voids — Small Size
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Figure (5.47) Compressive Strength versus Void Porosity for Specimens Containing
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Figure (5.48) Compressive Strength versus Void Porosity for Specimens Containing
Square Voids — Both Large and Small Sizes
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Figure (5.49) Compressive Strength versus Void Porosity for Specimens Containing
Diamond Voids — Large Size
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Figure (5.50) Compressive Strength versus Void Porosity for Specimens Containing
Diamond Voids — Small Size
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Figure (5.51) Compressive Strength versus Void Porosity for Specimens Containing
Diamond Voids — Both Large and Small Sizes
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Figure (5.55) Deformation versus Void Porosity for Specimens Containing
Diamond Voids — Large Size
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Figure (5.56) Deformation versus Void Porosity for Specimens Containing
Diamond Voids — Small Size
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Figure (5.57) Deformation versus Void Porosity for Specimens Containing
Diamond Voids — Both Large and Small Sizes
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Figure (5.58) Compressive Strength versus Void Porosity for Specimens Containing
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Figure (5.59) Deformation versus Void Porosity for Specimens Containing
Non-circular Voids — Both Square and Diamond Voids
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Figure (5.61) Deformation versus Void Porosity for Specimens with VVoids Having
Different Size, Shape and Spatial Distributions
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Table (5.5) Numerical and Experimental Results for the Models Containing Unisize
Circular Voids

Sample Porosity | Experimental | Numerical | Experimental Numérlcal
Name (n) UcCs UCS E (25-50%) (25-50%)

% MPa MPa GPa GPa
PA-UCL2-1 6.56 19.31 30.695 9.36 13.099
PA-UCL2-2 6.56 16.62 31.934 8.65 12.419
PB-UCL2 6.56 17.31 38.537 11.74 12.973
PC-UCL2 6.56 24.61 31.852 9.86 13.331
PA-UCL4-1 | 13.12 18.20 23.689 9.66 11.215
PA-UCL4-2 | 13.12 14.27 23.301 8.56 10.252
PA-UCL4-3 | 13.12 13.51 25.765 8.55 10.299
PB-UCL4 13.12 11.55 23.623 8.68 10.247
PC-UCL4 13.12 16.27 23.583 11.27 10.874
PA-UCL6 19.68 9.84 20.406 6.69 8.145
PB-UCL6 19.68 9.63 19.638 7.47 8.890
PC-UCLG6 19.68 9.65 20.323 7.54 8.860
PA-UCM4 6.61 22.57 31.792 12.08 12.904
PB-UCM4 6.61 21.48 35.185 10.91 13.049
PC-UCM4 6.61 24.55 34.512 13.42 13.166
PA-UCM8 13.21 18.66 26.791 7.92 11.158
PB-UCMS8 13.21 17.34 25.354 10.07 11.023
PC-UCM8 13.21 13.24 24.024 11.85 10.936
PA-UCM12 | 19.82 12.53 17.409 8.61 9.191
PB-UCM12 | 19.82 941 19.287 9.03 8.804
PC-UCM12 | 19.82 5.55 12.533 7.57 8.650
PA-UCS11 6.07 26.27 35.969 11.58 13.519
PB-UCS11 6.07 26.74 31.017 10.67 13.450
PC-UCS11 6.07 21.65 31.552 11.38 13.440
PA-UCS22 12.14 15.72 24.724 9.49 11.373
PB-UCS22 12.14 17.56 21.823 8.72 11.276
PC-UCS22 12.14 16.75 24.205 12.09 11.403
PA-UCS33 18.22 11.35 20.033 8.19 9.746
PB-UCS33 18.22 13.27 17.555 9.19 9.704
PC-UCS33 18.22 10.09 18.335 7.44 9.583
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Table (5.6) Numerical to Experimental Ratios for Models Containing Unisize Circular

Voids
Sample Name Porosity (n) Numerical/Experimental Ratio

% For UCS For E
PA-UCL2-1 6.56 1.59 1.40
PA-UCL2-2 6.56 1.92 1.44
PB-UCL2 6.56 2.23 1.11
PC-UCL2 6.56 1.29 1.35
PA-UCL4-1 13.12 1.30 1.16
PA-UCL4-2 13.12 1.63 1.20
PA-UCL4-3 13.12 1.91 1.20
PB-UCL4 13.12 2.05 1.18
PC-UCL4 13.12 1.45 0.96
PA-UCL6 19.68 2.07 1.22
PB-UCL6 19.68 2.04 1.19
PC-UCL6 19.68 2.11 1.18
PA-UCM4 6.61 1.41 1.07
PB-UCM4 6.61 1.64 1.20
PC-UCM4 6.61 1.41 0.98
PA-UCMS 13.21 1.44 1.41
PB-UCM8 13.21 1.46 1.09
PC-UCM8 13.21 1.81 0.92
PA-UCM12 19.82 1.39 1.07
PB-UCM12 19.82 2.05 1.00
PC-UCM12 19.82 2.26 1.15
PA-UCS11 6.07 1.37 1.20
PB-UCS11 6.07 1.16 1.29
PC-UCS11 6.07 1.46 1.21
PA-UCS22 12.14 1.57 1.23
PB-UCS22 12.14 1.24 1.31
PC-UCS22 12.14 1.45 0.96
PA-UCS33 18.22 1.77 1.22
PB-UCS33 18.22 1.32 1.08
PC-UCS33 18.22 1.82 1.31
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Table (5.7) Numerical and Experimental Results for Models Containing Models
Containing Circular Voids with Mixed Sizes

. . : . Numerical
Porosity | Experime | Numerical | Experimen. E
Sample Name (n) n. UCS UCS E (25-50%) (25-50%)
% MPa MPa GPa GPa

PA-UXCL1M1S3 6.59 23.44 30.721 11.08 12.997
PB-UXCL1M1S3 6.59 23.96 30.046 10.85 13.412
PC-UXCL1M1S3 6.59 21.19 31.594 9.88 13.249
PA-UXCL2M3S6 14.83 13.93 20.706 7.99 10.485
PB-UXCL2M3S6 14.83 13.79 23.533 8.18 10.715
PC-UXCL2M3S6 14.83 14.69 22.533 9.47 10.533
PA-UXCL2M5S8 19.24 11.79 20.840 7.10 9.428
PB-UXCL2M5S8 19.24 10.43 19.801 8.30 9.299
PC-UXCL2M5S8 19.24 8.20 16.250 7.24 9.050

Table (5.8) Numerical to Experimental Ratios for Models Containing Circular Voids
with Mixed Sizes

Sample Name Porosity (n) Numerical/Experimental Ratio
% For UCS For E

PA-UXCL1M1S3 6.59 1.31 1.17
PB-UXCL1M1S3 6.59 1.25 1.24
PC-UXCL1M1S3 6.59 1.49 1.34
PA-UXCL2M3S6 14.83 1.49 1.31
PB-UXCL2M3S6 14.83 1.71 1.31
PC-UXCL2M3S6 14.83 1.53 1.11
PA-UXCL2M5S8 19.24 1.77 1.33
PB-UXCL2M5S8 19.24 1.90 1.12
PC-UXCL2M5S8 19.24 1.98 1.25
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Table (5.9) Numerical and Experimental Results for Models Containing Non-Circular
Voids (Square and Diamond)

Porosity | Experimental | Numerical | Experimental | Numerical E
Sample Name (n) UCS UCS E (25-50%) (25-50%)
% MPa MPa GPa GPa
PA-USqL3 6.28 20.98 33.484 10.19 13.361
PB-USqL3 6.28 28.27 32.685 11.34 13.449
PA-USgL6 12.56 16.20 25.315 10.98 10.536
PB-USqL6 12.56 20.02 27.922 8.18 11.047
PA-USgM6 6.32 26.20 34.478 11.11 13.390
PB-USgM6 6.32 26.52 35.058 10.36 13.230
PA-USqM12 12.65 17.37 22.562 10.56 11.182
PB-USgM12 12.65 16.18 23.081 7.73 10.602
PA-UDmL3 6.28 16.06 33.683 10.32 12.430
PB-UDmML3 6.28 22.80 32.919 11.50 12.878
PA-UDmML6 12.56 11.88 20.024 8.95 9.593
PB-UDmL6 12.56 10.55 21.713 10.02 9.575
PA-UDmMM6 6.32 19.21 32.102 11.71 12.526
PB-UDmMM6 6.32 22.58 30.540 11.22 12.679
PA-UDMM12 | 12.65 11.01 18.338 9.26 10.239
PB-UDMM12 | 12.65 16.93 22.323 10.72 10.829

Table (5.10) Numerical to Experimental Ratios for Models Containing Non-Circular

Voids (Square and Diamond)

Sample Name Porosity Numerical/Experimental Ratio

% For UCS For E
PA-USQL3 6.28 1.60 1.31
PB-USgL3 6.28 1.16 1.19
PA-USQL6 12.56 1.56 0.96
PB-USgL6 12.56 1.39 1.35
PA-USQM6 6.32 1.32 1.21
PB-USqM6 6.32 1.32 1.28
PA-USgM12 12.65 1.30 1.06
PB-USgM12 12.65 1.43 1.37
PA-UDmML3 6.28 2.10 1.20
PB-UDmL3 6.28 1.44 1.12
PA-UDmML6 12.56 1.69 1.07
PB-UDmML6 12.56 2.06 0.96
PA-UDMM®6 6.32 1.67 1.07
PB-UDmMM6 6.32 1.35 1.13
PA-UDMmM12 12.65 1.67 1.11
PB-UDmM12 12.65 1.32 1.01
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Table (5.11) Ratios of Numerical UCS to Experimental UCS for All Numerical

Models
) Void Size
Void Types : Average
Large Medium Small
Circular (Unisize) 1.799 1.652 1.462 1.654
Circular (Mixed) 1.603 1.603
Square 1.428 1.343 1.385
Diamond 1.823 1.503 1.663
All Circular 1.652
All Voids 1.59

Table (5.12) Ratios of Numerical E to Experimental E for All Numerical Models

_ Void Size
void Types Large Medium Small Average
Circular (Unisize) 1.216 1.099 1.201 1.195
Circular (Mixed) 1.242 1.242
Square 1.203 1.230 1.216
Diamond 1.088 1.080 1.084
All Circular 1.206
All Voids 1.196

5.9 Three-Dimensional versus Two-Dimensional

As mentioned before, in order to evaluate the numerical analysis, the numerical

200

results should be compared to the experimental results obtained from laboratory or/and
field tests. Since laboratory or/and field tests, experimental tests, are generally done in
three dimensional system, the two-dimensional plane strain, or plane stress, results should
be transformed to experimental three-dimensional results. Since the theoretical methods

to carry out the transformation are typically very complex, an empirical method through
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establishing a relationship between numerical and experimental results might be useful
and helpful.

Accordingly, to carry out the comparison, the two-dimensional plane strain
mechanical properties given by UDEC should be transformed to three-dimensional
mechanical properties. Therefore, the relationships between numerical mechanical
properties (UCS and E) given by UDEC and the experimental mechanical properties
obtained from the laboratory tests carried out on the Hydro-StoneTB® cubes are plotted
in Figures (5.67) to (5.76). According to the figures, the following conclusions can be
drawn:

1- The numerical results of uniaxial compressive strength given by the UDEC for the
models containing circular voids with different size, distribution and uniformity
are in decent relationships with experimental results of uniaxial compression tests
on the Hydro-StoneTB® cubes. The correlation of UCS is followed power trend,
as shown in Figure (5.67), and can be represented best by the following equation:

[UCS(MPa)]gyp. = 0.2635 * [(UCS(MPQ)) yum ] 12681 R* = 0.7722 ...(5.17)

However, after excluding the results for models containing large unisize circular
voids, the numerical results showed better power correlation, as shown in Figure
(5.68), and can be represented best by the following equation:

[UCS(MPa)]gyp. = 0.1955 * [(UCS(MPa)) yum] 37 R? = 0.888 ...(5.18)

2- For the models containing non-circular voids, the numerical results of uniaxial

compressive strength given by the UDEC showed good relationship with
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experimental results of uniaxial compression on the cubes. The correlation of
UCS is also followed power trend, as shown in Figure (5.69), and can be
represented best by the following equation:

[UCS(MPa)]gyp. = 0.385 * [(UCS(MP)) yym] 2155 R? = 0.7157 ...(5.19)

From Figure (5.70) for the merged data, the numerical results of uniaxial
compressive strength given by the UDEC for the models containing voids with
different shape, size, distribution and uniformity (all voids) are in decent
relationship with experimental results of uniaxial compression on the cubes. The
correlation of UCS is followed power trend and can be represented best by the
following equation:

[UCS(MPa)]gyp = 0.2613 * [(UCS(MPQ))yyum ] 2738 R? = 0.7809 ...(5.20)
1Y

Similarly, after excluding the results for models containing large unisize circular
voids, the numerical results showed better correlation, as shown in Figure (5.71),
and can be represented best by the following equation:

[UCS(MPa)]gyp. = 0.2382 * [(UCS(MPQ)) yum ] 3125 R? = 0.847 ...(5.21)

The numerical results of E given by the UDEC for the models containing circular
voids with different size, distribution, and uniformity are in moderate relationship
with those obtained from the experimental results carried out on the cubes. The
correlation of E is followed power trend, as shown in Figure (5.72), and can be

represented best by the following equation:
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[E(GPa)]pyp. = 1.0944 * [(E(GPQ))yyum] ®®%*  R*=0.6116 ...(5.22)

However, after excluding the results for models containing large unisize circular
voids, the numerical results did not show any change, as shown in Figure (5.73),
and the relationship can be represented best by the following equation:

[E(GPa)]gxp. = 1.0071 * [(E(GPA))yum] ®%3®  R? = 0.6133 ...(5.23)

For the models containing non-circular voids, the numerical results of Young’s
modulus given by the UDEC showed poor relationship with those obtained from
the experimental results carried out on the cubes. The correlation of Young’s
modulus is also followed power trend, as shown in Figure (5.74), and can be
represented best by the following equation:

[E(GPa)]gyp. = 2.5351 * [(E(GPQ)) nym.] ©>¢%8 R? = 0.3219 ..(5.24)

From Figure (5.75), the numerical results of Young’s modulus given by the
UDEC for the models containing voids with different shape, size, distribution and
uniformity (all voids) are in moderate relationship with those obtained from the
experimental results carried out on the cubes. The correlation of Young’s modulus
is followed power trend and can be represented best by the following equation:

[E(GPa)]gyp. = 1.2201 * [(E(GPa)) nym ] *B>3* R? = 0.5681 ...(5.25)
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However, after excluding the results for models containing large unisize circular
voids, the numerical results showed a moderate power correlation with smaller R?,
as shown in Figure (5.76), and can be represented best by the following equation:

[E(GPa)] gy, = 1.2404 * [(E(GPQ)) yym ] ©8512 R? = 0.5471 ..(5.26)

According to the results, the two-dimensional plane strain results gave a good
relationship with three-dimensional experimental results. However, the relationship for
UCS is stronger than the relationship for E. The correlation can be represented best by
power equation as follows:

(Experimental Results)sp = a * [(Numerical Results),p]? ..(5.27)
Or

Three — Dimensional = a * (Two — Dimensional Plane Strain) ? ...(5.28)

Where a and b are constants. Their values vary depending on void geometry and type of
the mechanical properties. Regarding this numerical analysis for Hydro-Stone TB® porous
cubes using UDEC (version 3.1) with VVoronoi tessellation having average block size of
3.5 mm, the value of a and b varied from 0.1955 to 2.5351 and 0.5668 to 1.376
respectively.

For uniaxial compressive strength, the value of a varied from 0.1955 to 0.385.
The minimum value, a = 0.1955, was for numerical models containing unisize circular
voids except those containing large unisize circular void. The maximum value was for the
numerical models containing non-circular voids. For numerical models containing voids

with different geometry, all voids, the value of a was 0.2613. The value reduced to
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0.2382 for numerical models containing voids with different geometry, all voids, except
those containing large unisize circular voids. The value of a for Young’s modulus varied
from 1.0071 to 2.5351. The minimum value, a = 1.0071, was for numerical models
containing circular voids except those containing large unisize circular void. The
maximum value, a = 2.5351, was for the numerical models containing non-circular voids.
For numerical models containing voids with different geometry (all voids) the value of a
was 1.2201. While the value increased to 1.2404 for numerical models containing voids
with different geometry (all voids) except those containing large unisize circular void.
Regarding b values, for uniaxial compressive strength, the value of b varied from
1.1655 to 1.378. The minimum value, b = 1.1655, was for numerical models containing
non-circular voids. The maximum value was for the numerical models containing unisize
circular voids except those containing large unisize circular void. For numerical models
containing voids with different geometry (all voids) the value of b was 1.2738. The value
increased to 1.3125 for numerical models containing voids with different geometry, all
voids, except those containing large unisize circular voids. The value of b for Young’s
modulus varied from 0.5668 to 0.9338. The minimum value, b = 0.5668, was for the
numerical models containing non-circular voids. The maximum value, b = 0.9186, was
for numerical models containing circular voids except those containing large unisize
circular void. For numerical models containing voids with different geometry (all voids)
the value of b was 0.8535. While the value did not change (0.8512) for numerical models
containing voids with different geometry, all voids, except those containing large unisize

circular void.
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CHAPTER SIX NUMERICAL SIMULATIONS TO GENERATE NEW MODELS

CONTAING VOIDS WITH DIFFERENT SHAPES, SIZES, AND DISTRIBUTIONS

6.1 Introduction
Numerical models are extremely less expensive, not time-consuming, and more
controllable compared to experimental tests. Numerical simulations, once created, can be
continually changed and modified with extremely less effort. Furthermore, in numerical
analysis, material can be simulated at any scales; from the macro-scale, such as
simulating the behavior of a tunnel in the abutment of a dam, to micro scale, effects of
void porosities on rock mechanical behaviors (Erfourth 2006). For the aforementioned
reasons, a new set of numerical models will be created using UDEC to:
1- Study the effects of void shapes and their orientations on the mechanical
behavior of the rock-like material under uniaxial compression, and
2- Validate the hypotheses mentioned in Chapter Four (data analysis); total width of
solid column (W) is the second factor which governs the mechanical behavior of

rock-like material after void porosity.

6.2 Generate Models to Study the Effects of Void Shape on the Mechanical
Properties of Rock-like Material

To explore the effects of void shape exclusively, the other factors such as void
porosity, void size, and void distribution, should be kept constant for all the models. To
fulfill this requirement, twenty four (24) 152.4 mm porous squares were simulated in

UDEC under uniaxial compression. Four different void shapes with two different void
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sizes, large (486.1 mm?) and small (244.8 mm?) sizes, and three different porosities (3.2,
6.3, and 12.6%) were studied. The various shapes were circular, square, rectangular
(vertical), and triangular (equilateral). Since voids with different sizes and porosities are
already leading to different void patterns, only one type of void patterns was studied. The
void pattern A as studied in the experimental work, cube, was selected and adopted as the
base for comparison purpose with the numerical models. Table (6.1) and Figures (6.1)

and (6.2) show the characterizations of model simulated in this section.

Table (6.1) Numerical Models to Simulate the Effects of VVoid Shapes

Shape of Size of Voids, Number VO".j Sample Name
Voids (mm) of Voids Porosity,
n (%)
1 3.16 PA-UCL1
Lar?g’i :rf]ftir';‘m' 3 632 | PA-UCL3
Circular 6 12.65 PA-UCL6
Small, 17.66 mm, | 314 | PA-UCSS
(Diameter) 6 6.28 PA-UCS6
12 12.56 PA-UCS12
1 3.16 PA-USqL1-Vertical
Ligz’ezfé? tr:]')m' 3 6.32 | PA-USqL3-Vertical
Square g 6 12.65 | PA-USqL6-Vertical
Small 15.65 mm 3 3.14 PA-USqS3-Vertical
(Si d,e Lén th) ’ 6 6.28 PA-USgS6-Vertical
9 12 12.56 PA-USqgS12-Vertical
Large, 1 3.16 PA-URL1-Vertical
15.59 x 31.18 3 6.32 PA-URL3-Vertical
Rectangular (mm) 6 12.65 | PA-URL6-Vertical
(Vertical) Small, 3 3.14 PA-URS3-Vertical
11.06 x 22.13 6 6.28 | PA-URS6-Vertical
(mm) 12 12.56 | PA-URS12-Vertical
1 316 | PA-TCL1-Straight
L?Sr?ge ‘T’_?;r‘? rtr;g' 3 6.32 | PA-TCL3-Straight
Tria_ngular g 6 12.65 PA-TCL6-Stra_i_qht
(Equilateral) Small, 23.78 mm, 3 3.14 PA-TCS3-Straight
(Side Length) 6 6.28 PA-TCSG-Stralq_ht
12 12.56 PA-TCS12-Straight
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The numerical results, uniaxial compressive strength (UCS) and Young’s modulus
(E), for simulated are shown in Table (6.2) and Figures (6.3) to (6.9). According to the
results, the following observations can be discussed:

1- For the void porosities ranging from 3% to 13%, from Figures (6.3) to (6.6), the
numerical results showed decreases in both UCS and E with increasing void
porosity.

2- The various void shapes studied in this numerical analysis gave discernible effects
on the mechanical properties. For the same void porosity and regardless of the
void size, the numerical models containing unisize rectangular (vertical) voids
gave the highest compressive strength and modulus of elasticity; while, the
numerical models containing unisze triangular (equilateral) voids gave the lowest
compressive strength and modulus of elasticity, see Figures (6.3) to (6.6). In other
words, regardless of void size, the numerical models with unisize vertical
rectangular voids were stronger and stiffer compared to the other models.

3- From Figures (6.3) and (6.4), for the same porosity, the models with large square
voids are slightly stronger than models with large circular voids. However, for the
models with small voids, the results did not follow specific trend; for the void
porosities of 3.14% and 6.28%, the models with small square voids were stronger
than those with small circular voids, while for the void porosity of 12.56%, the
models with small circular voids were stronger than those with small square
voids. Regarding Young’s modulus, the two different shapes (square and circular

voids) did not show any difference; the Young’s Moduli for the models
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containing unisize square voids were similar to the models containing circular
voids regardless the void sizes and void porosity, see Figures (6.5) and (6.6)

From Figures (6.3) to (6.6), for the same void porosity, the numerical models
containing unisize voids gave different values for both UCS and E. However, the
differences in UCS are higher than those in E.

The differences in both UCS and E for different void shapes linearly increased
with void porosity increasing as shown in Figures (6.7) and (6.8) and Table (6.3).
For models with large voids, the difference in UCS for models containing six
voids (20.905 MPa) is larger by about four times than the differences in UCS for
models containing only one void (5.992 MPa), while it is about two times for E
(3.868 GPa for models containing six voids and 1.550 GPa for models containing one
voids). For models with small voids, the difference in UCS for models containing
twelve voids (12.067 MPa) is about twofold larger than the differences in UCS for
models containing only three voids (6.888 MPa), while, it is higher by 60% for E
(1.835 GPa for models containing twelve voids and 1.142 GPa for models containing
three voids).

The relationship between UCS and E for all numerical models is plotted in Figure
(6.9). The results gave a very decent power correlation, and it can be represented

best by the following equation:

UCS(MPa) = 0.257 * [E(GPa)]-°%4 R? =0.9403 ..(6.1)
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Table (6.2) Numerical Models Containing Unisize Large Voids with Different Shapes

Porosity | Numerical | Numerical
Model Name Void Shape (n) UCsS E (25-50%)
% MPa GPa
PA-UCL1 3.16 41.059 2.566
PA-UCL3 6.32 32.076 2.005
PA-UCL6 Circular 12.65 24.762 1.548
PA-UCS3 3.14 42.489 14.615
PA-UCS6 6.28 31.845 13.271
PA-UCS12 12.56 26.566 11.192
PA-USqgL1-Vertical 3.16 44.432 15.203
PA-USqgL3-Vertical 6.32 33.477 13.358
PA-USqgL6-Vertical S 12.65 25.315 10.536
PA-USqS3-Vertical quare 3.14 44.174 14570
PA-US(qS6-Vertical 6.28 34.478 13.390
PA-USgS12-Vertical 12.56 22.562 11.182
PA-URL1-Vertical 3.16 46.723 15.340
PA-URL3-Vertical 6.32 41.722 13.892
PA-URLG-Vertical Rectangular 12.65 34.656 11.961
PA-URS3-Vertical (Vertical) 3.14 44,592 15.132
PA-URS6-Vertical 6.28 39.360 14.052
PA-URS12-Vertical 12.56 29.974 11.811
PA-TCL1-Straight 3.16 40.731 13.790
PA-TCL3-Straight 6.32 30.186 11.972
PA-TCLG6-Straight Triangular 12.65 13.751 8.092
PA-TCS3-Straight (Equilateral) 3.14 37.705 13.990
PA-TCS6-Straight 6.28 29.974 11.811
PA-TCS12-Straight 12.56 17.907 9.976

Table (6.3) Differences in UCS and E for Numerical Models Containing Large Voids

Void Porosity, n | Differences in UCS (MPa) | Differences in E (25-50%) (GPa)
% Large Voids | Small Voids Large Voids Small Voids
0.00 0 0 0 0
3.16 5.992 6.888 1.550 1.142
6.32 11.536 9.386 1.921 2.242
12.65 20.905 12.067 3.868 1.835
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Figure (6.3) Compression Strength versus VVoid Porosity for Numerical Models
Containing Large Unisize Voids
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Figure (6.4) Compression Strength versus VVoid Porosity for Numerical Models
Containing Small Unisize Voids
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Figure (6.5) Deformation versus Void Porosity for Numerical Models
Containing Large Unisize Voids

18

16

14 -

12 -

10 ~

E (GPa)

e=@== Small Circular Voids
4 === Small Square VVoids

=== Small Rectangular VVoids

e=yw==Small Triangular VVoids

Porosity, n (%)

Figure (6.6) Deformation versus Void Porosity for Numerical Models
Containing Small Unisize Voids
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Figure (6.7) Differences in Uniaxial Compression versus Void Porosity for Numerical
Models Containing Unisize Voids — Both Large and Small Sizes
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Figure (6.8) Differences in Deformation versus VVoid Porosity for Numerical
Models Containing Unisize Voids — Both Large and Small Sizes
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Figure (6.9) Compression Strength versus Deformation for Numerical Models
Containing Unisize Voids — Both Large and Small Sizes

6.3 Numerical Simulations to Study the Effects of Void Orientations on the
Mechanical Properties of Rock-like Material

Rotating the square voids in the cubes tested in the work of Project Activity Task
ORD-FY04-013 by 45 degree to obtain porous cubes with diamond shape voids reduced
the uniaxial compressive strength of the cubes by 9% on average. Since both square voids
and diamond voids have the same shape and corner sharpness, the void rotation which led
to larger void width, (the void dimension perpendicular to the maximum compression
stress) might case the decrease in the cube’s strength. Accordingly, to check if the void
orientation has effects on the mechanical properties of rock-like materials, 152.4 mm
porous squares with the same void porosity, void size, and void distribution, but different

orientation were simulated under uniaxial compression in UDEC. The only parameter
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changed was void orientation through rotating the voids by either 45 degree or 90 degree
or both. Three different void shapes (square, rectangular, and triangular) with two
different void sizes (large and small sizes) were studied to check the effects of void
orientation on the mechanical properties of the numerical models. For the models with
square voids, one void orientation (45 degree to obtain diamond shapes) was studied;
while for the models with either rectangular voids or triangular voids two different void
orientations (45 degree and 90 degree) were studied. Figure (6.10) and Table (6.4) show

the characterizations of the model simulated in this section.

] # SN
PA-U SgLé -Vertical PA-USqL6- 45" (Diamond)
U Ol %0 |2 5o
D i d <:\ N an D‘@
=7 S S I
PA-URL6-Vertical PA-URLS - 45° PA-URLS - 90° (Horizontal)
A A B iy
VAR LN\ 22l V> < ﬂﬂgﬂ
L . f{*—», QQD o
PA-TCL6-Straight PA-UTLS - 45° PA-UTLS - 90°

Figure (6.10) Numerical Models to Simulate the Effects of VVoid Orientation—
Large Size
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Table (6.4) Numerical Models Containing Unisize Voids with Different Orientations

Shape of S'Z? of Void Number VO'C.I
: Voids . . Porosity Sample Name
\Voids Rotation | of Voids
(mm) . N (%)
1 3.16 PA-USqglL 1-Vertical
Large ?Vgﬁ?JSS 3 632 | PA-USqL3-Vertical
Square | 2205 mm L 316 PAUSALL 45" (biamond
- ' . -USgL1- 45° (Diamon
(Side Length) ‘gi'drf]gf; 3 632 | PA-USqL3- 45" (Diamond)
(Diamond) 6 1265 | PA-USQL6- 45° (Diamond)
0-degree 1 3.16 PA-URL1-Vertical
(vertical) 3 6.32 PA—URL3—Vert!caI
6 12.65 PA-URLG6-Vertical
Large, 1 3.16 PA-URL1-45°
Rectangular | 15.59 x 31.18 | 45-degree 3 6.32 PA-URL3-45°
(mm) 6 12.65 PA-URL6-45°
1 3.16 PA-URL1-90° (Horizontal)
(lf"ir‘ffg;f:n 3 632 | PA-URL3-90" (Horizontal)
6 12.65 PA-URL6-90° (Horizontal)
1 3.16 PA-UTL1-Straight
?véjﬁ?craeﬁ 3 6.32 | PA-UTL3-Straight
6 12.65 PA-UTL6-Straight
Triangular Large, 1 3.16 PA-URL1-45°
(Equilateral) 33.5 mm, 45-degree 3 6.32 PA-URL3-45
(Side Length) 6 12.65 PA-URL6-45°
90-degree 1 3.16 PA-URL1-90’
(Horizontal) 3 6.32 PA-URL3-90
6 12.65 PA-URL6-90°
1 3.14 PA-USqS3-Vertical
sl ?Vgﬁ?craeﬁ 3 6.28 | PA-USqS6-Vertical
Square 110 mr,n 6 12.56 PA-USqS12-Vertical
(si 4o Leng'th) 45-degree 1 3.14 PA-USqS3-45° (Diamond)
(Diamond) 3 6.28 PA-US(S6-45° (Diamond)
6 12.56 PA-US(S12-45° (Diamond)
0-degree 1 3.14 PA-URS3-Vertical
(vertical) 3 6.28 PA-U RS6—Vert|c_aI
6 12.56 PA-URS12-Vertical
Small, 1 3.14 PA-URS3-45°
Rectangular | 11.06 x 22.13 | 45-degree 3 6.28 PA-URS6-45°
(mm) 6 12.56 PA-URS12-45°
1 3.14 PA-URS3-90° (Horizontal)
(f'ir‘fzeg;f:n 3 6.28 | PA-URS6-90° (Horizontal)
6 12.56 PA-URS12-90° (Horizontal)
1 3.14 PA-UTS3-Straight
?VSS?(::S 3 6.28 | PA-UTS6-Straight
6 12.56 PA-UTS12-Straight
Triangular Small, 1 3.14 PA-URS3-45°
(Equilateral) 2_3.78 mm, 45-degree 3 6.28 PA-URS6-45°
(Side Length) 6 12.56 PA-URS12-45°
90-degree 1 3.14 PA-URS3-90°
(Horizontal) 3 6.28 PA-URS6-90°
6 12.56 PA-URS12-90°
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The numerical results, uniaxial compressive strength (UCS) and Young’s modulus
(E), for the simulated (models containing unisize voids with different orientations - O-
degree, 45-degree, and 90-degree) are plotted as a function of void porosity as shown in
Figures (6.11) to (6.22). The results are also shown in Tables (6.5) and (6.6). According
to the results, the following observations can be discussed:

1- Void orientations for models containing large square voids gave different values
in uniaxial compressive strength as shown in Figure (6.11) However, for models
containing small square voids no differences were observed as shown in Figure
(6.12). From Figure (6.11), for the same porosity, the models with large square
voids (zero rotation) gave slightly higher uniaxial compressive strength compared
to the models with rotated square voids (diamond voids). In addition, the
differences in the uniaxial compressive strength values increased with void
porosity increasing for models with large voids; they are 1.39, 2.76, and 5.29 MPa
for void porosities of 3.16, 6.32 and 12.65% respectively. However, the
differences in the uniaxial compressive strength values increased with void
porosity increasing for models with small voids; they are 5.9, 2.38, and 1.98 MPa
for void porosities of 3.14, 6.28 and 12.56% respectively.

2- Regarding the values of Young’s modulus, the results for models containing
square voids (both large and small sizes) showed slightly higher values compared
to the models with 45-degree rotated square voids (diamond voids) as shown in
Figures (6.12) and (6.14). The differences increased with void porosity increasing
as shown in the figures. The differences for the models with large voids are 0.41,

0.56, and 0.94 MPa for void porosities of 3.16, 6.32 and 12.65% respectively. For
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the models with small voids, the differences are 0.25, 0.86, and 0.77 MPa for void
porosities of 3.16, 6.32 and 12.65% respectively.

For models with rectangular voids, both large and small void sizes, the void
orientations gave different values in both uniaxial compressive strength and
Young’s modulus as shown in Figures (6.15) to (6.18). From the figures, for the
same porosity, the models with vertical rectangular voids gave higher strength and
Young’s modulus compared to the models with rotated rectangular voids. In
addition, the value of uniaxial compressive strength and Young’s modulus for
models with rectangular voids rotated by 45-degree were higher than those with
rectangular voids rotated by 90-degree. The maximum differences in the uniaxial
compressive strength values are 4.8, 14.52, and 17.99 MPa for void porosities of
3.15, 6.3 and 12.6% respectively. In other words, regardless of void size, the
numerical models with unisize vertical rectangle voids were stronger and stiffer
than the models with rotated rectangular voids.

The different void orientations for models with triangular (equilateral) voids, both
large and small void sizes, did not show distinct effects on the mechanical
properties of the numerical models as shown in Figures (6.19) to (6.22). From the
figures, except the uniaxial compressive strength for models having void porosity
of 12.65% (large voids only), similar reduction in both uniaxial compressive
strength and Young’s modules with increasing void porosity was observed
regardless of the void size and distribution. However, for the void porosity of

12.65% for large voids, see Figure (6.19), the models with straight triangular
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voids had lower strength by 6.8 MPa (12.38%) compared to the models

containing rotated equilateral triangular voids (both 45 and 90-degree).

Table (6.5) Numerical Results for Models Containing Unisize Large Voids

Porosity . Normalized
(n) Numerical Values Numerical Values
Model Name
% UCS E UCS E
(MPa) (GPa) (MPa) (GPa)
PA-UCL1 3.16 41.059 | 15.020 0.746 0.939
PA-UCL3 6.32 32.076 | 13.327 0.583 0.833
PA-UCL6 12.65 24.762 | 10.970 0.450 0.686
PA-USqL1-Vertical 3.16 44432 | 15.203 0.808 0.950
PA-USgL3-Vertical 6.32 33.477 | 13.358 0.609 0.835
PA-USgL6-Vertical 12.65 25.315 | 10.536 0.460 0.659
PA-USQL1-45° (Diamond) 3.16 43.041 | 14.793 0.782 0.925
PA-USQL3-45° (Diamond) 6.32 30.713 | 12.799 0.558 0.800
PA-USgL6-45° (Diamond) 12.65 20.024 9.593 0.364 0.600
PA-URL1-Vertical 3.16 46.723 | 15.340 0.849 0.959
PA-URL3-Vertical 6.32 41.722 | 13.892 0.758 0.868
PA-URLG6-Vertical 12.65 34.656 | 11.961 0.630 0.748
PA-URL1-45° 3.16 45.320 | 14.748 0.824 0.922
PA-URL3-45° 6.32 31.790 | 11.931 0.578 0.746
PA-URL6-45° 12.65 16.928 9.014 0.308 0.563
PA-URL1-90° (Horizontal) 3.16 41.922 | 14.318 0.762 0.895
PA-URL3-90° (Horizontal) 6.32 27.203 | 11.734 0.494 0.733
PA-URL6-90° (Horizontal) | 12.65 16.667 7.826 0.303 0.489
PA-UTL1-Straight 3.16 40.731 | 13.790 0.740 0.862
PA-UTL3-Straight 6.32 30.186 | 11.972 0.549 0.748
PA-UTLG6-Straight 12.65 13.751 8.092 0.250 0.506
PA-UTL1-45° 3.16 44.329 | 14.570 0.806 0.911
PA-UTL3-45° 6.32 30.541 | 12.573 0.555 0.786
PA-UTL6-45° 12.65 20.407 8.006 0.371 0.500
PA-UTL1-90° 3.16 43.170 | 14.783 0.785 0.924
PA-UTL3-90° 6.32 30.541 | 12.570 0.555 0.786
PA-UTL6 -90° 12.65 20.562 8.992 0.374 0.558
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Table (6.6) Numerical Results for Models Containing Unisize Small VVoids

Porosity Numerical Normalized
(n) Values Numerical Values
Sample Name
% UCS E UCS E

(MPa) | (GPa) (MPa) (GPa)

PA-UCSmM3 3.14 42.489 | 14.615 0.772 0.913
PA-UCSmM6 6.28 31.845 | 13.271 0.579 0.829
PA-UCSmM12 12.56 | 26.566 [ 11.192 0.483 0.700
PA-USgSm3-Vertical 3.14 44,174 | 14.570 0.803 0.911
PA-USqSm6-Vertical 6.28 34.478 | 13.390 0.627 0.837
PA-USgSm12-Vertical 1256 | 22.562 | 11.182 0.410 0.699
PA-USqSm3-45° (Diamond) 3.14 38.271 | 14.323 0.696 0.895
PA-USgSm6-45° (Diamond) 6.28 32.102 | 12.526 0.584 0.783
PA-USgSm12-45° (Diamond) 12.56 | 20.584 | 10.411 0.374 0.651
PA-URSm3-Vertical 3.14 44592 | 15.132 0.811 0.946
PA-URSm6-Vertical 6.28 39.360 | 14.052 0.715 0.878
PA-URSm12-Vertical 1256 | 29.974 | 11.811 0.545 0.738
PA-URSmM3-45° 3.16 37.114 | 14.029 0.675 0.877
PA-URSmM6-45° 6.32 28.368 | 12.073 0.516 0.755
PA-URSmM12-45° 12.65 |[21.703 | 9.791 0.395 0.612
PA-URSmM3-90° (Horizontal) 3.14 34.065 | 13.763 0.619 0.860
PA-URSmM6-90° (Horizontal) 6.28 28.771 | 11.495 0.523 0.718
PA-URSmM12-90° (Horizontal) 12.56 | 15.479 | 9.308 0.281 0.582
PA-TCSm3-Straight 3.14 37.705 | 13.990 0.685 0.874
PA-TCSm6-Straight 6.28 29.974 | 11.811 0.545 0.738
PA-TCSm12-Straight 12.56 | 17.907 | 9.976 0.326 0.623
PA-URSmM3-45° 3.16 35.704 | 14.406 0.649 0.900
PA-URSmM6 -45° 6.32 29.792 | 11.817 0.542 0.739
PA-URSmM12-45° 12.65 | 20.055 | 9.682 0.365 0.605
PA-URSmM3-90° 3.14 36.741 | 13.980 0.668 0.874
PA-URSmM6-90° 6.28 31.001 | 12.044 0.564 0.753
PA-URSmM12-90° 12.56 | 19.863 | 10.059 0.361 0.629
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Figure (6.11) Compression Strength versus Void Porosity for Numerical
Models Containing Large Unisize Voids — Square Voids
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Figure (6.12) Compression Strength versus Void Porosity for Numerical
Models Containing Small Unisize Voids — Square Voids
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Figure (6.13) Deformation versus Void Porosity for Numerical Models
Containing Large Unisize Voids — Square Voids
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Figure (5.14) Deformation versus Void Porosity for Numerical Models
Containing Small Unisize Voids — Square Voids
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Figure (6.15) Compressive Strength versus VVoid Porosity for Numerical
Models Containing Large Unisize Voids — Rectangular Voids
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Figure (6.16) Compressive Strength versus Void Porosity for Numerical
Models Containing Small Unisize Voids — Rectangular VVoids
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Figure (6.17) Deformation versus Void Porosity for Numerical Models
Containing Large Unisize Voids —Rectangular VVoids
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Figure (6.18) Deformation versus Void Porosity for Numerical Models
Containing Small Unisize Voids — Rectangular Voids
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Figure (6.19) Compressive Strength versus Void Porosity for Numerical

Containing Large Unisize Voids — Triangular Voids
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Figure (6.20) Compressive Strength versus Void Porosity for Numerical

Containing Small Unisize Voids — Triangular VVoids
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Figure (6.22) Deformation versus Void Porosity for Numerical Models
Containing Small Unisize Voids — Triangular VVoids
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The numerical results showed that the models with either vertical rectangular
voids or 45-degree rotated rectangular voids gave the highest value for both UCS and E,
while, the models with either horizontal rectangular voids or straight triangular voids

gave the lowest values for both UCS and E.

6.4 Numerical Simulations to Validate the Effects of Void Geometry on the
Mechanical Properties.

The numerical results from the previous sections, sections 6.2 and 6.3, are used to
validate the mathematical expressions in Chapter Four [Egs. (4.11), (4.12), and (4.16)].
Therefore, the total width of solid columns (W) for each numerical model was measured
as shown in Tables (6.7) and (6.8). Figure (6.23) shows examples of solid columns and
porous columns for models containing six unisize large voids.

The values of uniaxial compressive strength and Young’s modulus for numerical
models are plotted as a function of void porosity in Figures (6.24) and (6.25). According
to the results, for the void porosity ranging between 3% and 13%, regardless of the void
size, void shape, void orientation, and void distribution, the normalized numerical results
similar to the experimental results showed increases in both normalized UCS and E with
decreasing void porosity. However, on the contrast to the experimental results, the
coefficient of determination for uniaxial compressive strength (R? =0.7902) is smaller
than that for Young’s modulus (R* = 0.8182). The numerical correlations for both
strength and deformation followed logarithmic trend with increasing porosity, and they

can be represented best by the following equations:
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(UCS)Porous

= 0.2577 = In((porosity,%)™1) + 1.048 R? = 0.7902 ..(6.2)
(UCS)solia
(E)Porous _ , -1 2 _
——— = 0.208 * In((porosity, %)™ ") + 1.1543 R =0.8182 ..(6.3)
(E)solid

The percentages of the maximum differences in UCS values are 37.3%, 53.3%,
and 152% for void porosities 3.15%, 6.3%, and 12.6% respectively. Regarding the
deformation, the percentages of the maximum differences in E values are 11.6, 22.2%,
and 104% for void porosities 3.15%, 6.3%, and 12.6% respectively. The differences can
be attributed to the effects of void geometry and the efficiency of the software used in the
numerical analysis. However, since the trend of numerical results in the numerical
analysis in Chapter Five were in a good agreement with the trend of the experimental
results, the latter cause for the differences can be considered as a secondary cause.
Therefore, the main source of the differences in both UCS and E is believed to be the

void geometry that can be represented by expressions in Egs. (4.11), (4.12), and (4.16) as

follows:
W + 0.01D
(UCS)porous ( 0.01D ) (6.4)
(UCS)solia n
(W + 0.01D)
(E)porous o 0.01D ..(6.5)
(E)solid n
E W+ 0.01D
(UCS)Porous x [;* < 0.01D )] (6.6)

Accordingly, the numerical values of uniaxial compressive strength and Young’s

modulus for the numerical models are plotted as a function of void porosity, total width
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of solid columns (W), and void size as shown in Figures (6.26) to (6.31). From the
results, the following observations can be discussed:

1- The relationships of normalized UCS and E with the normalized total width of
solid columns (W), shown in Figures (6.26) and (6.27), are in very good
agreements. The normalized W was obtained by dividing the total width of
solid columns (W) for each numerical model by the model’s width, L (152.4
mm). As shown in the figures, both uniaxial compressive strength and
Young’s modulus increased when the normalized W increasing. The
correlations followed very decent power trends and can be represented best by

the following equations:

(UCS)Porous

= 03171« In(W /L) + 0.8475 R? =0.9216 .. (6.7)
(UCS)solid W/L)
(E)Porous _ 2
2JPorous _ () 48 « In(W /L) + 0.9856 R? = 0.896 . (68)
(E)solid

2- From Tables (6.7) and (6.8), and Figure (6.23), the numerical models those
have the highest strength and stiffness (models containing vertical rectangular
voids) gave the largest W compared to the other models; W = 136.82 mm.
While the numerical models with the lowest strength and stiffness (models
containing straight triangular voids) gave the lowest W compared; W = 118.9
mm. The total width for solid columns W for models with either circular or
square voids were close to each other and accordingly their strength and
stiffness were similar; W = 130.36 mm for models with square voids, and W =

127.52 mm for models with either circular voids.
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3- The relationships between the mechanical properties of the numerical models
with the void porosity and void geometry expressed by total width of solid
columns (W) gave a decent agreement following logarithmic trend as shown
in Figures (6.28), (6.29), and (6.31). The mathematical expressions, Egs. (6.4),

(6.5), and (6.6), can be represented best by the following equations:

(UCS)porous W +001+D
22 2JPorous _ g 9435 4 fp— "~ 10,0304 R?=09181 ..(69
(UCS)soria 001+ D *n ©9)
(E)POTOUS W + 001 * D
22JPOrous _ 1953 s In— ———~ 10335  R%Z=09411 ..(6.10
(E)sotid " 001D *n (19
ucs 6839 | WHOOLD) 0 6
( )Porous - " * n 0.01 *D *N - .

R? =0.9247 ..(6.11)

4- Considering the total width of solid columns (W) to explore the effects of void
geometry on the mechanical properties improved the correlations between the
mechanical properties of the numerical models and void porosity. From
Figures (6.24) and (6.28), the percentages of the maximum differences in UCS
values reduced from 152% to 48.4%; up to 68% of the differences are
reduced. In addition, the coefficient of determination (R? for uniaxial
compressive strength increased from 0.7902 to 0.9181. Similarly, the
correlations for Young’s modulus is improved and the percentages of the
maximum differences in E values reduced from 104% to 26.5%; up to 74.5%
of the differences are reduced. In addition, the coefficient of determination
increased from 0.8182 to 0.9411; see Figures (6.25) and (6.29). Regarding the
relationships between the uniaxial compressive strength and Young’s modulus

as shown in Figures (6.30) and (6.31), the numerical results showed better
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correlation, and the coefficient of determination increased from R? = 0.8517 to

R? =0.9247.
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Figure (6.23) Total Width of Solid Columns (W) for Numerical Models
Containing Six Large Unisize Voids
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Table (6.7) Total Width of Solid Columns for Models Containing Large Unisize VVoids

Model Name Total Width of Solid Columns (mm)
W1 Wo W3 Wy Wsg W

PA-UCL1 63.76 | 63.76 127.52
PA-UCL3 4555 | 19.4 | 19.48 84.43
PA-UCL6 1146 | 16.71 | 17.72 45.89
PA-USqgL1-Vertical 65.18 | 65.18 130.36
PA-USqgL3-Vertical 20.82 | 46.96 | 22.31 90.09
PA-USqgL6-Vertical 12.88 | 18.12 | 20.55 51.55
PA-USgL1-45° (Diamond) 60.61 | 60.61 121.22
PA-USQL3-45° (Diamond) 424 | 16.25 | 13.18 71.83
PA-USQL6- 45° (Diamond) | 13.56 | 8.31 | 11.42 33.29
PA-URL1-Vertical 68.41 | 68.41 136.82
PA-URL3-Vertical 50.18 | 24.04 | 2.62 | 28.77 105.61
PA-URLG6-Vertical 21.35 | 16.11 1.5 6.41 | 27.01 | 72.38
PA-URL1-45° 59.66 | 59.66 119.32
PA-URL3-45° 153 | 41.45 | 11.29 68.04
PA-URL6-45° 7.37 | 1261 | 9.52 29.5

PA-URL1-90° (Horizontal) | 60.61 | 60.61 121.22
PA-URL3-90° (Horizontal) 424 | 16.25 | 13.18 71.83
PA-URLG6-90° (Horizontal) 8.31 | 13.56 | 11.42 33.29
PA-TCL1-Straight 59.45 | 59.45 118.9
PA-TCL3-Straight 41.24 | 15.09 | 10.86 67.19
PA-TCL6-Straight 7.15 12.4 9.09 28.64
PA-URL1-45° 57.52 | 57.52 115.04
PA-URL3-45° 13.16 | 44.31 12 69.47
PA-URL6-45° 5.22 | 1547 | 10.23 30.92
PA-URL1-90° 56.55 | 66.53 123.08
PA-URL3-90° 38.65 | 22.17 | 15.35 76.17
PA-URL6-90° 9.8 14.23 | 13.58 37.61
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Table (6.8) Total Width od Solid Columns for Models Containing Unisize Small Voids

Total Width of Solid Columns (mm)
Model Name
Wy Wo W3 Wy W5 Weg Wy W
PA-UCSmM3 23.01 | 49.16 | 26.71 98.88
PA-UCSmM6 435 | 24.94 | 20.32 | 15.07 64.68
PA-UCSmM12 0.73 | 20.28 | 15.07 36.08
PA-USqgSm3-Vertical 24.02 | 50.17 | 28.71 102.9
PA-USqgSm6-Vertical 21.32 | 16.08 | 6.35 | 26.95 70.7
PA-USqSm12-Vertical | 21.29 | 16.08 | 1.45 38.82
PA-USqSmM3-45°
(Diamo‘l 0 46.92 | 20.78 | 22.23 89.93
PA-USQSmM6-45°
(Diamo?Id) 12.84 | 18.08 | 20.47 51.39
PA-USgSm12-45°
(Diamo‘l 0 12.84 | 18.04 30.88
PA-URSmI3-Vertical 2651 | 52.26 | 33.3 | 7.15 119.22
PA-URSm6-Vertical 18.57 | 23.42 | 6.03 | 31.53 | 10.93 90.48
PA-URSmM12-Vertical 18,57 | 23.38 | 352 | 6.23 | 6.03 | 7.33 | 214 | 67.2
PA-URSmM3-45° 20.3 | 46.06 | 20.89 87.25
PA-URSmM6-45° 12.36 | 17.21 | 19.46 49.03
PA-URSmM12-45° 12.37 | 17.18 29.55
PA-URSmM3-90°
(Horizontal) 20.78 | 46.92 | 22.23 89.93
PA-URSmM6-90°
(Horizontal) 12.84 | 18.08 | 20.47 51.39
PA-URSmM12-90°
(Horizontal) 12.84 | 18.04 30.88
PA-TCSm3-Straight 19.95 | 46.1 | 20.58 86.63
PA-TCSm6-Straight 12.01 | 17.26 | 18.82 48.09
PA-TCSm12-Straight 12.01 | 17.22 29.23
PA-URSmM3-45° 18.58 | 48.28 | 21.39 88.25
PA-URSmM6-45° 10.64 | 19.44 | 19.63 49.71
PA-URSmM12-45° 1064 | 19.4 30.04
PA-URSmM3-90° 4426 | 24.98 | 23.77 93.01
PA-URSM6-90° 17.04 | 1542 | 1.4 | 22 55.86
PA-URSmM12-90° 15.38 | 17.04 32.42
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CHAPTER SEVEN CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This study used both experimental and numerical results to characterize the
effects of void porosity and geometry on strength, stiffness and failure modes of rock-like
materials. For the experimental program, fifty two porous cubes made of Hydro-Stone
TB® containing voids with different size, shape and distribution were tested under
uniaxal compression. In the numerical works, one hundred twenty seven (127) two-
dimensional porous models were simulated under uniaxial compression using UDEC

software.

7.1.1 Conclusions for the Experimental Results
From the experimental results, the following conclusions can be drawn:

1- For the void porosity ranging from 6% to 20%, the experimental values of
uniaxial compressive strength and Young’s modulus for Hydro-StoneTB® cubes
decreased with void porosity increasing. However, the results displayed very high
variation, especially with regard to Young’s modulus.

2- The results in this study showed that it is not-only the porosity but also the void
geometry can affect the strength and deformability of rock-like materials.
Accordingly, the void geometry is partially responsible for the scattering of the
test results.

3- The hypothesis of using the bridge distances (By), side distances (S), and top

distances (T) to express the effects of void geometry on the mechanical properties
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of rock-like materials did not improve the correlations between the mechanical
properties and void geometry. This may due to the fact that these factors are
interacting with each other and cannot be explored individually.

The hypothesis of using the total width of solid columns (W) to express the effects
of void geometry on the mechanical properties of rock-like materials improved
the correlations between the uniaxial compressive strength and void geometry.
The percentage of the maximum difference in UCS value reduced to less than
half. In addition, the coefficient of determination for uniaxial compressive
strength increased. However, the Young’s modulus did not show any distinct
response. The correlations between Young’s Modulus and void porosity for rock-
like materials are very difficult to be constructed using experimental results
obtained from uniaxial compression tests. Therefore, great care must be taken
regarding strain measurement for unaixail compression tests on porous specimens.
The ratio of specimen size (side length) to void size (void diameter) is important.
For the ratio of specimen size to void size equal to and less than 7, both
experimental and numerical results showed better correlation with void porosity.
In addition, for the same porosity, increasing the void sizes from 12.8 mm in
diameter to 31.1 mm in diameter (the ratios of large void sizes to smaller void size
were ranging from 1 to about 2.5) did not show discernible effects on the
mechanical behaviors of the rock-like material. Accordingly to explore the effect
of voids size, larger ratios should be considered.

The experimental results showed that the dominant failure modes for porous

cubes with void porosity ranging from 6% to 20% is axial splitting (tension
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fractures or failure). However, in each porous cube there were some shear failure
(inclined cracks) depending on the void alignments and bridge distances. In
general, the cracked were formed mainly at the void poles (or void tips) and
intended to expand approximately parallel to the axial compression load,
however, in some cubes cracks were formed between voids horizontally or sub-
horizontally depending on the distances between one void and the other voids
located at the immediate vicinity of the void. In those cubes, when a crack passes
vertically (or sub-vertically) between two voids, a horizontal crack was formed to
connect that crack to the void side or the sample side. Finally, the coalescence of
those cracks (horizontal (or sub-horizontal) and the vertical (or sub-vertical)
cracks) formed an inclined crack that gave a failure mode similar to the shear

failure mode.

7.1.2 Conclusions from the Numerical Results

From the numerical results, the following conclusions can be drawn:

1- The numerical results from the two-dimensional numerical analysis using
discrete element method, UDEC program, showed trend of reduction in the
value of the mechanical properties of rock-like materials with void porosity
increasing similar to the experimental results. However, the two-dimensional
UDEC simulation gave conservative values for both uniaxial compressive
strength and Young’s modulus compared to the values obtained from the
experimental tests. This is because of either modeling a three-dimensional

medium in two dimensions plane strain, or inability to model the friction
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between the steel platen and the Hydro-StoneTB® surfaces (top and bottom
faces of the cubes), or both.

The numerical strength results (numerical UCS) showed lesser scattering and
larger coefficients of determination (R?) compared to the experimental
strength results. In addition, the differences in UCS values reduced by more
than half. Accordingly, up to half of the differences in the experimental UCS
values can be attributed to the uncertainties existing in the experimental
uniaxial tests. Similarly, the numerical deformation results (numerical E)
tremendously reduced the data scattering and greatly increased the
coefficients of determination. In addition, the percentages of the maximum
differences in E values reduced by up to 85%. Therefore, again, great care
must be taken regarding strain measurement for unaixail compression tests on
porous specimens.

The two-dimensional uniaxial compression results can be transferred to three-
dimensional results through power relationship; (Experimental Results)sp =
a[(Numerical Results),p]’. UDEC simulations showed that the value of a
constant is ranging between 0.1955 and 0.385 for uniaxial compressive
strength, and between 1.0071 and 2.5351 for Young’s modulus. Regarding b
constant, its value varies from 1.1655 to 1.378 for uniaxial compressive
strength, and from 0.5668 to 0.9338 for Young’s modulus varied.

UDEC simulations showed that the void shape has discernible effects on the
mechanical properties of the two-dimensional models under uniaxial

compression. The numerical simulation displayed that the models containing
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vertical rectangular voids were the strongest and stiffest models compared to
the models with either, circular voids, or square voids, or straight equilateral
triangular voids. While the specimens with straight equilateral triangular voids
were the weakest. The porous models with circular void showed similar
results to the models with square voids.

UDEC simulations showed that the void orientation is also having effects on
the mechanical properties. The rotation of square voids by 45-degree, to
obtain models with voids having diamond shape, gave models with slightly
smaller uniaxial compressive strength and Young’s Modulus. The rotation of
vertical void by 90-degree, to obtain models with horizontal rectangular voids,
reduced the strength of the models to less than half. However, the void
orientation for triangular voids did not show any effects on the mechanical
properties of the two-dimensional models under uniaxial compression.

UDEC simulations showed that the hypothesis of using the total width of solid
columns (W) to express the effects of void geometry on the mechanical
properties can improve the correlations between the uniaxial compressive
strength and void geometry. From the numerical results, using W to express
the effects of void geometry, the percentages of the maximum differences in
UCS values reduced from 152% to 49%; up to 68% of the differences are
reduced. In addition, the coefficient of determination (R?) is increased.
Similarly, the correlations for Young’s modulus is improved and the

percentages of the maximum differences in E values reduced from 104% to
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27%; up to 74% of the differences are reduced. In addition, the coefficient of

determination is increased as well.

7.2 Recommendations
To extend the scope of understanding the effects of void porosity and void geometry
on the mechanical properties of porous rock, more researches are needed as follows:

1

Three-Dimensional numerical analysis to study the effects of void geometry on

the mechanical behavior of rock-like materials.

2- Numerical analysis to study the effects of void geometry on the mechanical
behavior of rock-like materials using plane stress assumption.

3- Numerical analysis to study the effects of void geometry on the crack initiation
and propagation using UDEC.

4- Numerical analysis to study the effects of void uniformity on the mechanical
behavior of rock-like materials; comparing the numerical results for models
containing voids with mixed sizes to the numerical results of models containing
voids with unisize sizes for the same void porosities.

5- In order to see if the block size in the discrete element modeling has effects on the
numerical results of UDEC simulations, more numerical study needs with
different block sizes.

6- To verify the numerical conclusions on the effects of void shape and orientation,
more experimental tests are necessary.

7- To explore the effects of confining pressure on the mechanical behavior of porous

rocks, more numerical simulations with different confining pressure are needed.
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8- Experimental testing of rock-like material with void porosity less than 6% and
more than 20%.

9- Since conducting experimental tests to explore the effects of void porosity and
geometry on the tensile strength of rocks are semi-impossible, simulating
numerical models under uniaxial tension stress can be helpful, and accordingly

more research is needed in this area.
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APPENDIX (I) LABROTARY TEST DATA

Table (1-Al) EXPERIMENTAL RESULTS OF TESTED CUBES

Porosity Uniaxia! Young's
Sample ") Compressive Modulus, E
No. Sample Name Strength, UCS (25 - 50%)
% MPa GPa
1 PA-UCL2-A 6.56 19.24 9.81
2 PA-UCL2-B 6.56 19.37 8.90
3 PA-UCL2-C 6.56 16.62 8.65
4 PB-UCL2-A 6.56 17.17 10.98
5 PB-UCL2-B 6.56 19.99 11.21
6 PB-UCL2-C 6.56 14.75 13.02
7 PC-UCL2-A 6.56 19.17 10.13
8 PC-UCL2-B 6.56 24.27 9.46
9 PC-UCL2-C 6.56 24.96 9.99
10 PA-UCL4-A 13.12 18.20 8.55
11 PA-UCL4-B 13.12 14.27 8.56
12 PA-UCL4-C 13.12 13.51 9.66
13 PB-UCL4-A 13.12 11.45 9.95
14 PB-UCL4-B 13.12 11.65 7.40
15 PB-UCL4-C 13.12 13.24 -
16 PC-UCL4-A 13.12 15.31 11.45
17 PC-UCL4-B 13.12 11.79 11.09
18 PC-UCL4-C 13.12 17.24 8.18
19 PA-UCLG6-A 19.68 9.24 6.53
20 PA-UCL6-B 19.68 10.34 6.84
21 PA-UCL6-C 19.68 9.93 7.74
22 PB-UCL6-A 19.68 8.89 13.44
23 PB-UCL6-B 19.68 10.34 5.76
24 PB-UCL6-C 19.68 9.65 9.18
25 PC-UCL6-A 19.68 8.55 7.54
26 PC-UCL6-B 19.68 10.76 15.41
27 PC-UCL6-C 19.68 5.03 -
28 PA-UCM4-A 6.61 21.24 12.2
29 PA-UCM4-B 6.61 24.61 11.95
30 PA-UCM4-C 6.61 21.86 10.29
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Table (I1-A2) EXPERIMENTAL RESULTS OF TESTED CUBES

Porosity Uniaxia! Young's
Sample (") Compressive Modulus, E

NoO. Sample Name Strength, UCS (25 - 50%)

% MPa GPa
31 PB-UCM4-A 6.61 20.96 10.81
32 PB-UCM4-B 6.61 21.99 11.01
33 PB-UCM4-C 6.61 24.89 11.67
34 PC-UCM4-A 6.61 25.44 13.77
35 PC-UCM4-B 6.61 23.65 12.23
36 PC-UCM4-C 6.61 19.44 14.27
37 PA-UCMS8-A 13.21 19.37 7.92
38 PA-UCMS8-B 13.21 18.96 -
39 PA-UCMS8-C 13.21 17.65 -
40 PB-UCMS-A 13.21 17.72 10.07
41 PB-UCMS8-B 13.21 16.96 -
42 PB-UCM8-C 13.21 10.41 -
43 PC-UCM8-A 13.21 15.44 12.78
44 PC-UCM8-B 13.21 13.24 7.60
45 PC-UCMBS8-C 13.21 13.24 10.91
46 PA-UCM12-A 19.82 12.82 8.23
47 PA-UCM12-B 19.82 12.55 8.80
48 PA-UCM12-C 19.82 12.20 8.80
49 PB-UCM12-A 19.82 7.58 9.52
50 PB-UCM12-B 19.82 9.17 4.10
51 PB-UCM12-C 19.82 9.65 13.46
52 PC-UCM12-A 19.82 5.72 7.80
53 PC-UCM12-B 19.82 2.76 7.34
54 PC-UCM12-C 19.82 5.38 5.72
55 PA-UCS11-A 6.07 26.75 11.95
56 PA-UCS11-B 6.07 27.99 11.20
57 PA-UCS11-C 6.07 24.06 -
58 PB-UCS11-A 6.07 25.41 -
59 PB-UCS11-B 6.07 28.89 10.67
60 PB-UCS11-C 6.07 25.92 10.67
61 PC-UCS11-A 6.07 20.48 11.33
62 PC-UCS11-B 6.07 17.51 11.75
63 PC-UCS11-C 6.07 22.82 11.05
64 PA-UCS22-A 12.14 15.79 11.99
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Table (1-A3) EXPERIMENTAL RESULTS OF TESTED CUBES

Porosity Uniaxia! Young's
Sample (") Compressive Modulus, E

NoO. Sample Name Strength, UCS (25 - 50%)

% MPa GPa
65 PA-UCS22-B 12.14 18.89 9.46
66 PA-UCS22-C 12.14 15.65 9.51
67 PB-UCS22-A 12.14 17.31 8.51
68 PB-UCS22-B 12.14 16.96 8.30
69 PB-UCS22-C 12.14 18.41 9.36
70 PC-UCS22-A 12.14 9.93 12.09
71 PC-UCS22-B 12.14 16.75 -
72 PC-UCS22-C 12.14 16.75 -
73 PA-UCS33-A 18.22 10.89 11.02
74 PA-UCS33-B 18.22 10.96 8.34
75 PA-UCS33-C 18.22 12.20 8.04
76 PB-UCS33-A 18.22 11.86 -
77 PB-UCS33-B 18.22 13.24 10.11
78 PB-UCS33-C 18.22 13.31 8.27
79 PC-UCS33-A 18.22 10.41 8.22
80 PC-UCS33-B 18.22 7.65 6.66
81 PC-UCS33-C 18.22 9.77 -
82 PA-USgL3-A 6.28 20.96 10.19
83 PA-USqL3-B 6.28 23.44 -
84 PA-USqL3-C 6.28 18.55 -
85 PB-USgL3-A 6.28 27.79 11.76
86 PB-USqL3-B 6.28 28.96 10.84
87 PB-USqL3-C 6.28 28.06 11.42
88 PA-USQL6-A 12.56 16.96 10.98
89 PA-USqL6-B 12.56 16.55 10.25
90 PA-USqL6-C 12.56 15.10 11.71
91 PB-USgL6-A 12.56 20.34 8.07
92 PB-USqL6-B 12.56 19.24 8.03
93 PB-USqL6-C 12.56 20.48 8.43
94 PA-USQS6-A 6.32 27.17 11.82
95 PA-USQqS6-B 6.32 25.17 13.57
96 PA-USQqS6-C 6.32 26.27 10.39
97 PB-USQS6-A 6.32 26.20 7.18
98 PB-USqS6-B 6.32 26.54 10.81
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Table (I-A4) EXPERIMENTAL RESULTS OF TESTED CUBES

Porosity Uniaxia! Young's
Sample (") Compressive Modulus, E

NoO. Sample Name Strength, UCS (25 - 50%)

% MPa GPa
99 PB-USqS6-C 6.32 26.82 9.91
100 | PA-USgM12-A 12.65 16.27 10.31
101 | PA-USqS12-B 12.65 17.37 12.77
102 | PA-USqS12-C 12.65 18.48 10.80
103 | PB-USgS12-A 12.65 17.10 7.67
104 | PB-USgS12-B 12.65 15.44 9.76
105 [ PB-USgS12-C 12.65 16.00 7.78
106 | PA-UDmL3-A 6.28 15.38 9.91
107 | PA-UDmL3-B 6.28 16.75 10.46
108 | PA-UDmML3-C 6.28 16.06 10.58
109 | PB-UDmML3-A 6.28 22.41 11.62
110 | PB-UDmL3-B 6.28 24.82 11.37
111 | PB-UDmL3-C 6.28 21.17 9.83
112 | PA-UDmL6-A 12.56 12.00 7.99
113 | PA-UDmLG6-B 12.56 12.00 4.75
114 | PA-UDmL6-C 12.56 11.65 9.90
115 | PB-UDmMLG6-A 12.56 11.17 10.34
116 | PB-UDmL6-B 12.56 10.48 7.62
117 | PB-UDmL6-C 12.56 10.00 9.69
118 | PA-UDmS6-A 6.32 19.17 11.45
119 | PA-UDmS6-B 6.32 19.44 11.96
120 | PA-UDmMS6-C 6.32 19.03 9.64
121 | PB-UDmS6-A 6.32 18.68 11.56
122 | PB-UDmMS6-B 6.32 22.61 10.54
123 | PB-UDmS6-C 6.32 22.55 11.57
124 | PA-UDmS12-A 12.65 10.27 9.16
125 | PA-UDmS12-B 12.65 11.31 7.05
126 | PA-UDmS12-C 12.65 11.45 9.35
127 | PB-UDmS12-A 12.65 14.41 10.75
128 | PB-UDmS12-B 12.65 16.34 12.58
129 | PB-UDmS12-C 12.65 17.51 10.69
130 | PA-UXCL1M1S3-A 6.59 21.93 11.41
131 | PA-UXCL1M1S3-B 6.59 24.55 11.53
132 | PA-UXCL1M1S3-C 6.59 23.86 10.29

255

www.manaraa.com



Table (I1-A5) EXPERIMENTAL RESULTS OF TESTED CUBES

Porosity Uniaxia! Young's
Sample Compressive Modulus, E

No. Sample Name (W | strength,UCS | (25 - 50%)

% MPa GPa
133 | PB-UXCL1M1S3-A 6.59 23.03 11.20
134 | PB-UXCL1M1S3-B 6.59 18.68 11.77
135 | PB-UXCL1M1S3-C 6.59 24.89 10.50
136 | PC-UXCL1M1S3-A 6.59 22.61 12.69
137 | PC-UXCL1M1S3-B 6.59 19.44 10.45
138 | PC-UXCL1M1S3-C 6.59 21.51 9.31
139 | PA-UXCL2M3S6-A 14.83 13.17 6.30
140 | PA-UXCL2M3S6-B 14.83 14.34 9.68
141 | PA-UXCL2M3S6-C 14.83 14.27 7.99
142 | PB-UXCL2M3S6-A 14.83 13.86 8.43
143 | PB-UXCL2M3S6-B 14.83 13.72 7.93
144 | PB-UXCL2M3S6-C 14.83 0.00 4.31
145 | PC-UXCL2M3S6-A 14.83 14.69 9.75
146 | PC-UXCL2M3S6-B 14.83 0.00 9.20
147 | PC-UXCL2M3S6-C 14.83 0.00 9.47
148 | PA-UXCL2M5S8-A 19.24 8.96 6.46
149 | PA-UXCL2M5S8-B 19.24 12.13 7.03
150 | PA-UXCL2M5S8-C 19.24 11.45 7.17
151 | PB-UXCL2M5S8-A 19.24 9.93 9.65
152 | PB-UXCL2M5S8-B 19.24 10.82 12.64
153 [ PB-UXCL2M5S8-C 19.24 10.55 6.95
154 | PC-UXCL2M5S8-A 19.24 8.96 6.40
155 | PC-UXCL2M5S8-B 19.24 7.45 8.07
156 [ PC-UXCL2M5S8-C 19.24 11.86 -
157 | Solid-1 0.00 54.95 16.04
158 | Solid-2 0.00 54.80 14.66
159 | Solid-3 0.00 53.42 16.01
160 | Solid-4 0.00 52.85 16.70
161 | Solid-5 0.00 57.31 14.77
162 | Solid-6 0.00 55.45 18.13
163 | Solid-7 0.00 54.65 15.55
164 | Solid-8 0.00 56.94 16.79
165 | Solid-9 0.00 56.7 14.91
166 | Solid-10 0.00 53.05 16.20
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FIGURE (I-1) PHOTOGRAPHS OF TESTED POROUS AND SOLID CUBES

Figure (1.1) Photographs of Tested Porous and Solid Cubes

PB-UCL2-A PB-UCL2-B Jal Pe-ucLoc

PC-UCL2-A PC-UCL2-B | | PC-UCL2-C
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PA-UCL4-A PA-UCL4-B PA-UCL4-C

PB-UCL4-A PB-UCL4-B PB-UCL4-C

PC-UCL4-A PC-UCL4-B PC-UCL4-C

an-el -t~ PA-UCL6-C
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PEUCLEA PB-UCL6 B PB-UCL6-C

PC-UCL6-A PC-UCL6-B PC-UCL6-C

““.‘“ ‘lw [ :—_ i
\‘ f
’3*' PA-UCM4-B | PA-UCM4-C
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PC-UCM4-A PC-UCM4-B = ! PC-UCM4-C
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il PB-UCMS-A I | PB-UCMS-B | N PB-UCMS8-C
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PA-UCM12-A = | llPA-UCMI12-C

PB-UCM12-A PB-UCM12-B PB-UCM12-C

PC-UCM12.5 PC-UCM12-C
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PB-UCS11-C

PC-UCS11-A PC-UCS11-B PC-UCS11-C

PA-UCS22-A PA-UCSZZ- ' PA-UCS22-C

PB-UCS22-C
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PC-UCS22-A PC-UCS22-B PC-UCS22-C

PA-UCS33-A PA-UCS33-B B g PA-UCS33-C

PB-UCS33-A PB-UCS33-B
PB-UCS33-C

PC-UCS33-A : PC-UCS33-B PC-UCS33-C
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&b

PA-UXCLIM1S3-B
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I PBUXCL2M386A| PB-UXCL2M356-B | | PB-UXCL2M3S6-C

| PC-UXCL2M3S6-B {PC-UXCL2M3S6-C

PC-UXCL2M3S6-A

PA-UXCL2M5S8-A )
PA-UXCL2M5S8-B PA-UXCL2M5S8-C
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PC-UXCL2M5S8-A PC-UXCL2M5S8-B PC-UXCL2M5S8-C

PA-USQL3-A PA-USqL3-B A PA-USQL3-C

PB-USQL3-A | PB-USqL3-B | PB-USqL3-C
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PB-USqL6-A PB-USqL6-B PB-USqL6-C

PA-USQS6-A | PA-USGS6-B PA-USGS6-C

A

PB-USqS6-A PB-USQS6-B

UsgsL2-
PA-USAS12-A PA-USgS12-B PA-USQgS12-C
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PB-USaS12-A PB-USqS12-B PB-USqS12-C

PA-UDmML3-A PA-UDmML3-B PA-UDmML3-C

PB-UDmML3-A PB-UDML3-B W PB-UDML3-C
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PB-UDmML6-A PB-UDmML6-B PB-UDmML6-C

PA-UDMS6-A PA-UDmS6-B PA-UDMS6-C

PB.UDMS6.A suomses ] PB-UDmMS6-C

PA-UDmMS12-A PA-UDmMS12-B PA-UDmMS12-C
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PB-UDmS12-A )| PB-UDMS12-B PB-UDmMS12-C
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~ Solid Cube

Tested Solid Cube Tested Solid Cube
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APPENDIX (I1) UDEC CALIBRATION

Table (11-1) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION

Material Properties Used as UDEC Input Data

Model - - -
Name | pen | K™ G" Jtterg’ Jg;ﬁ; Jg’rﬁ‘{ reSren | r€Seric | reSconr | Ko Ks

kg/m? Pa Pa Pa Degree Pa Pa Degree Pa Pa/m | Pa/m
spsci | 1700 | Al | 82C 1 538 g5 | o) 0 15 0 | X107 | 0%
spscz | 1700 | il | 821 S8 g5 | o) o 15 0 | y10 | xro
spsc3 | 1700 | aod | SEC | S0 135 | | o 15 0 Y104 | wion
sosca | 100 | 2L | SZTSSIS g [Ty g | | L2062
spscs | 1700 | Al | 821 538 g5 | 245 g 15 o | T | o
spsce | 1700 | aod | S2C | S8 g5 | 28 o 15 I ve el s
SDSC7 | 1700 1)(21‘391 iizoi Sxfé? 35 lege 0 15 0 1'1%514)( ?('15023
SDSC8 | 1700 1)(21'(1)91 gfoi ii’ég’ 35 )25’5;5 0 15 0 1181‘)*( x%;”
SDSC9 | 1700 1)(21'3;[ g'lzoi ifég 35 >2<sz6 0 15 0 1'1%214)( figi
spsc10 | 1700 | TAL | 928 SN0 a5 | B2 o 15 0 | e | o
SDSC11 | 1700 1)(21'(1)91 g'lzoﬁ Sxfé? 35 ifble 0 15 0 1'1%?;4)( ?{15013
SDSC12 | 1700 1)(21'(1)91 gfoﬁ 5)(?3? 35 ifble 0 15 0 1'1%?;4)( gfolg
spsc13 | 1700 | TALL | OS24 | LIOZ a5 | 2L 0 15 0 | o | o
spscia | 1700 | TAL | 920 | 278 g5 | Bl g 15 o | o | a0
spsc1s | 1700 | TAL | 020 | 950 1 a5 | Bl o 15 0 | e | o
SDSC16 | 1700 1)(21'(1)91 gfoﬁ 1)1(.1%%2 35 ifble 0 15 0 1'1%?;4)( gfolg
spsc17 | 1700 | TALL | OS24 | 10SE g5 | B o 15 0 | e | o
spscig | 1700 | TAL | 928 | 2TEB a5 | Bl g 15 0 | e | o
spsc1o | 1700 | TAL | 0201 S50 a5 | Bl o 15 0 | e | o
SDSC20 | 1700 1)(21'(1)91 gfo‘i 1)1(‘1%3%2 35 ifble 0 15 0 1'1%?;4)( gfolg
spsca1 | 1700 | PRI | OS24 SMS g5 | B o 15 0o | o | o
soscas | o | BT | &2 [0e5 | oy | me| o | o | o [imr o
SDSC23 | 1700 122)'(11%% i‘lzosg 1§i%%5 21 fl%e 0 7 0 1'1%?14)( ?('15013
SDSC24 | 1700 122)'(11%% gi2059 13'160%5 21 )‘:’sze 0 7 0 1'1%%4)( ?(-15013
spsczs | wroo | 212l [Te28Ieeas | T ae [T [T 108|088
spscas | wroo | 212l T2 IREaS [T a2 g [Ty [ | L0gx[08i8
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Table (11-2) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION

Material Properties Used as UDEC Input Data

Model i : :
Name Den K™ G" Jttergl J%ir%’ Jg;rr# I€Sten | MCSkric | I€Scohr Kn ks

kg/m? Pa Pa Pa Degree Pa Pa Degree Pa Pa/m | Pa/m
e [ [ BB 2 (B8] o [Sg] o [ o [ o [0
spscas | 1700 | 12121 628 ) 16625 |, | 3B, o 0 | 10X [0St
e e e e N vl O R O e
SDSC30 | 1700 122)'(11%% §'12059 13-1%265 24 3)(31[715 0 o 0 1.1%3;} 2,5013
spscat | 1700 [ 12120 625 | 18635 |, | 3BIE] o : 0 | oEx [0Sk
s oo | B S 1B | o [ 3] 0 [ o | o ||
spscas | 700 [ 12121 628 16625 |5y | S . 0 103 0STE
spsca4 | 1700 | B21ZL| B2 16625 oy SLY . 0 1035 | 0S5
SDSC35 | 1700 122)'(11%% gizo% 1)‘3-1%%5 27 iib% 0 o 0 1.1%3;} ?(_15013
SDSC36 | 1700 122)'(11%% gizo% 15-1%265 27 iiblﬁ 0 o 0 1.1%31} 2,15013
spscar | 1700 | 12120 625 | 18635 |,y | 3LAZ] 5 0 103 [ 0I:
o oo | B[ S 1B | o (5] 0 [ & | o [ [0
spscsg | 1700 [ 12121 628 ) 16625 |5, | 3AZ ], N 0 103 0STE
ncw [ | 22| e [ | [ o [ w | o [
spscar | 1700 [ 12120 625 16835 |5y | 2T " 0 | L0sx [0St
spscaz | 1700 | 12120 625 | 16635 |5y | 2T " 0 | Lox|osE
spscas | 1700 [ 12120 625 | 18635 |5 | 20861 " 0 | oEx|osE
spscas | 1700 | S2AZ0| O 168350 g | 20851 N 0 103 0SS
spscas | 1700 [ 12120 625 | 1683 |5y | 26550 N 0 103 0STE
spscas | 1700 | 3220 | OZ0 | 1B g | 201 g 1 0 | [oE
e o | 22| S [es | [ 58] o | w | o ||
spsca | 1700 | 12120 625 | 16679 | 5y | 20460 " 0 | Loex|osE
sDscag | 1700 [ 12120 625 | 16679 | 5 | 20481 " 0 | oex|osE
spscso | 1700 | J2A20 | OZ 116619 ) gy | 20450 N 0 103 [ 0SS
spscsi | 1700 [ 12120 62 | 16679 |5y | 20450 5 0 103 0STE
spscs2 | 1700 | B2120 | B 116625 ) 55 | 220 5 0 1035 [ 0S5
spscss | 1700 | B2120 | B 166251 55 | B2 5 0 1035 | 0S5
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Table (11-3) MATERIAL PROPERTIES USED IN THE MODEL CALIBRATION

Material Properties Used as UDEC Input Data

Model : i i
Name | Den | k™ | 6™ | e | | R T s | 0 ke | ke

kg/m? Pa Pa Pa Deg. Pa Pa Deg. Pa Pa/m Pa/m
spscs4 | 1700 | 12120 62 | 16625 1 g5 | 234 | g 1 0 | LOX 0515x10°
spscss | 1700 | S21Z4 | 625 1166251 55 | 238 1 0 | Lo 0515x10"
sDsCs6 | 1700 | poaas | S20 | 1885 g5 | 238 1 15 o | L 0515x10"
spscs7 | 1700 122)-(11%% )?.12059 1)?.1%265 35 | 850 | 15 0 1.1%314x 0.51?x101
spscss8 | 1700 122)-(11%% )62.12059 12.1%265 1 | 2850 | 15 0 1.1%3;4x 0.51§x101
sDscs9 | 1700 122)-(11%3& 5.12059 1)6(.1%%5 5 235x10 | 15 0 1.1%314x 0.51§x101
spsceo | 1700 | 32120 | 62 116801 4, | 205 1 0 | Loz 0515x10"
spscel | 1700 | 12121 62 | 1100y, | 202 1 0 | LOX 0515x10"
spscez | 1700 | 12420 [ 625 [ 1700 [y [ 2025 | o [ 45 | o [ 103x 05150
spsces | 1700 | 2220 | OS2 | 18D gy | 208 1o | s 0 | Lo 051510"
spsces | 1700 | o5 | OS2 | O 4y | 208 1o | s o | L 0.515x10°
spsces | 1700 | 2200 | S20 | 1052 gy | 2052 o 15 o | XX 0.519x10°
spsces | 1700 | 12120 | 62 | 168204, | 204 ] g 1 0 | 1O 0515x10"
spsce7 | 1700 | B21ZL | 625 1682 1 4, | 204 1 0 | LOEX 05T5x10"
spsces | 1700 | Soo5 | 920 | W2 gy | 20| g 15 0 | 108X 051510"
s | o | 1| 48 |6 | o | S o | w [0 | om | O
spsc7o | 1700 | SAA2L | 625 | 8IS gy 262 gy ] | 7L 03%
spscr1 | 1700 | 122|625 | 18I2 g | 2625 g gy g | 071 0857
spscrz | 1700 | L2321 625 | 1600 gy | 20T g gy g | 0728 1 0504
coscra | e | 22|62 | 808wtk |y | | o | 0z | s
coscra | o | 220|825 WS |0 |y |y [ g | 0z | oams
spscrs | 1700 | 2120 62 | 189 gy | 2600 1 g gy g | 072728 | 036804
s | o | 27| &8 [507 | w | B9 [0 | w | o | |vemm
soscrr | o0 | 2| 6 (89 |y [ B0 [ 5 [ | o | O | o
soscre | o | 2|62 [0 [0 |y | | o | O | T
spsc79 | 1700 | 2220 | OZ0 | AOOTL g | 20020 g g o | 072728 | 036304
coscan | o0 | 221|628 [ B0 | oy [0y |y | o | 07z | mas
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Table (11-4) NUMERICAL RESULTS FOR SIMULATED MODELS IN THE
CALIBRATION PROCESS

Uniaxial Compressive Uniaxial Compressive
Model Strength, BCS Young’s Modulus, E Strength, BCS
Name

(MPa) (GPa) (MPa)
SDSC1 30.281 2.733 -
SDSC2 28.281 15.816 -
SDSC3 52.066 16.123 -
SDSC4 56.660 16.161 -
SDSC5 53.592 16.062 -
SDSC6 54.313 15.999 -
SDSC7 54.480 16.004 -
SDSC8 55.745 15.984 -
SDSC9 55.242 15.984 -
SDSC10 55.039 16.004 -
SDSC11 54.548 15.984 0.011
SDSC12 54.965 16.004 0.073
SDSC13 54,923 15.992 0.155
SDSC14 54.989 15.997 0.521
SDSC15 55.039 16.004 0.000
SDSC16 55.230 16.008 3.424
SDSC17 58.807 16.006 5.507
SDSC18 58.903 16.031 8.383
SDSC19 58.867 16.031 8.390
SDSC20 58.867 16.031 8.390
SDSC21 58.867 16.031 8.390
SDSC22 53.956 16.127 5.510
SDSC23 54.653 16.024 5.508
SDSC24 54.937 16.036 5.506
SDSC25 54.985 16.034 5.510
SDSC26 52.692 16.017 5.510
SDSC27 54.872 16.021 5.506
SDSC28 54.891 16.021 5.506
SDSC29 54.698 16.020 5.506
SDSC30 55.056 16.019 5.506
SDSC31 53.239 16.015 5.506
SDSC32 48.540 15.978 5.492
SDSC33 56.613 16.038 5.492
SDSC34 54.799 16.024 5.492
SDSC35 55.338 16.031 5.492
SDSC36 54,912 16.025 5.492
SDSC37 54.953 16.017 5.492
SDSC38 52.268 16.005 5.492
SDSC39 55.512 16.024 5.492
SDSC40 58.453 16.042 5.446
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Table (11-5) NUMERICAL RESULTS FOR SIMULATED MODELS IN THE
CALIBRATION PROCESS

Uniaxial Compressive , Uniaxial Tensile
Model Strength, BCS Young’s Modulus, E Strength, UTS
Name

(MPa) (GPa) (MPa)
SDSC41 55.761 16.022 5.446
SDSC42 55.220 16.014 5.450
SDSC43 55.325 16.013 5.439
SDSC44 54.819 16.013 5.451
SDSC45 55.401 16.021 5.446
SDSC46 55.231 16.014 5.521
SDSC47 55.120 16.015 5.481
SDSC48 55.145 16.015 5.505
SDSC49 54.744 16.014 5.498
SDSC50 55.064 16.016 5.510
SDSC51 55.049 16.016 5.506
SDSC52 59.069 16.050 5.512
SDSC53 54.323 16.012 5.495
SDSC54 54,762 16.018 5.500
SDSC55 55.710 16.022 5.509
SDSC56 55.225 16.024 5.492
SDSC57 55.026 16.021 5.501
SDSC58 55.007 16.021 5.502
SDSC59 55.014 16.021 5.497
SDSC60 55.296 16.024 5.427
SDSC61 54,534 16.017 5.445
SDSC62 54.559 16.020 5.503
SDSC63 54.498 16.017 5.438
SDSC64 54.638 16.017 5.513
SDSC65 54.462 16.018 5.520
SDSC66 54.662 16.019 5.507
SDSC67 55.048 16.022 5.488
SDSC68 53.134 16.010 5.488
SDSC69 57.553 15.954 5.460
SDSC70 54.985 15.933 5.586
SDSC71 57.491 15.977 5.556
SDSC72 54.471 15.971 5.519
SDSC73 55.240 16.000 5.415
SDSC74 54.520 15.991 5.517
SDSC75 54.194 15.993 5.531
SDSC76 54.146 15.997 5.534
SDSC77 55.123 16.000 5.528
SDSC78 54.147 16.924 5.528
SDSC79 54.272 16.008 5.511
SDSC80 55.026 15.999 5.528
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Figure (11.1) COMPRESSION STRESS-STRAIN CURVE FOR THE
CALIBRATED MODEL
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Figure (11.2) POST-FAILURE MODE (IN COMRESSION) FOR THE
CALIBRATED MODEL
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APPENDIX (111) NUMERICAL SIMULATIONS FOR HYDRO-STONETB® CUBES

AND THEIR STRESS-STRAIN CURVES
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Figure (111.1) Numerical Simulations for Hydro-StonTB® Cubes and Their Stress-Strain
Curves - PA-UCL2-1
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APPENDIX (IV) NUMERICAL MODELS AND THEIR STRESS-STRAIN CURVES
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